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Abstract

In this paper, we prove that arbitrary hyperbolic curves over p-adic lo-
cal fields admit resolution of nonsingularities [“RNS”]. This result may be
regarded as a generalization of results concerning resolution of nonsingu-
larities obtained by A. Tamagawa and E. Lepage. Moreover, by combining
our RNS result with techniques from combinatorial anabelian geometry,
we prove that an absolute version of the geometrically pro-Σ Grothendieck
Conjecture for arbitrary hyperbolic curves over p-adic local fields, where
Σ denotes a set of prime numbers of cardinality ≥ 2 that contains p,
holds. This settles one of the major open questions in anabelian geometry.
Furthermore, we prove — again by applying RNS and combinatorial an-
abelian geometry — that the various p-adic versions of the Grothendieck-
Teichmüller group that appear in the literature in fact coincide. As a
corollary, we conclude that the metrized Grothendieck-Teichmüller group
is commensurably terminal in the Grothendieck-Teichmüller group. This
settles a longstanding open question in combinatorial anabelian geometry.
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Introduction

Let p be a prime number; Σ a nonempty subset of the set Primes of prime
numbers. For a connected noetherian scheme S, we shall write ΠS for the étale
fundamental group of S, relative to a suitable choice of basepoint. For any field
F of characteristic 0, any field extension F ⊆ E, and any algebraic variety [i.e.,
a separated, geometrically integral scheme of finite type] Z over F , we shall

write ZE
def
= Z ×F E and denote by F an algebraic closure [well-defined up to

isomorphism] of F and by GF
def
= Gal(F/F ) the absolute Galois group of F . For

any field F of characteristic 0 and any algebraic variety Z over F , we shall write

Π
(Σ)
Z

def
= ΠZ/Ker(ΠZF

↠ ΠΣ
ZF

),

where ΠZF
↠ ΠΣ

ZF
denotes the maximal pro-Σ quotient. Here, we recall that

Π
(Σ)
Z is often referred to as the geometrically pro-Σ fundamental group of Z. We

shall write Qp for the field of p-adic numbers; Cp for the p-adic completion of
Qp. We shall refer to a finite extension field of Qp as a p-adic local field. For
any hyperbolic curve Z over either the algebraic closure of a mixed character-
istic complete discrete valuation field of residue characteristic p or the p-adic
completion of such an algebraic closure, we shall write

Πtp
Z

for the Σ-tempered fundamental group of Z, relative to a suitable choice of base-
point [cf. the subsection in Notations and Conventions entitled “Fundamental
groups”]. If S1, S2 are schemes, then we shall write

Isom(S1, S2)

for the set of isomorphisms of schemes between S1 and S2. IfG1, G2 are profinite
groups, then we shall write

OutIsom(G1, G2)

for the set of isomorphisms of profinite groups, considered up to composition
with an inner automorphism arising from an element ∈ G2.

In the present paper, we give a complete affirmative answer to the following
question:
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Does an arbitrary hyperbolic curve over a p-adic local field admit
resolution of nonsingularities?

Before continuing, we review the notion of resolution of nonsingularities. Let
K (⊆ K) be a mixed characteristic complete discrete valuation field of residue
characteristic p; v a valuation on a field F that contains K. Write OK for the
ring of integers of K; Ov for the ring of integers determined by v; mv ⊆ Ov

for the maximal ideal of Ov. Then we shall say that v is a p-valuation [over
K] [cf. Definition 2.2, (i)] if OK = Ov ∩K [which implies that p ∈ mv]. Here,
the phrase “over K” will be omitted in situations where the base field K is
fixed throughout the discussion. We shall say that v is residue-transcendental

[cf. Definition 2.2, (i)] if it is a p-valuation whose residue field kv
def
= Ov/mv

is a transcendental extension of the residue field of K. Let Z be a hyperbolic
curve over K. Then we shall say that Z satisfies Σ-RNS [i.e., “Σ-resolution
of nonsingularities” — cf. Definition 2.2, (vii); [Lpg1], Definition 2.1] if the
following condition holds:

Let v be a discrete residue-transcendental p-valuation on the func-
tion field K(Z) of Z. Then there exists a connected geometrically
pro-Σ finite étale Galois covering Y → Z such that Y has stable
reduction [over its base field], and v coincides with the restriction
[to K(Z)] of a discrete valuation on the function field K(Y ) of Y
that arises from an irreducible component of the special fiber of the
stable model [cf. Definition 2.1, (vi)] of Y .

If Z is an OK-scheme, then we shall write Zs for the special fiber of Z [i.e.,
the fiber of Z over the closed point of Spec OK ]. Let Z be an OK-scheme. Then
[cf. Definition 2.1, (i), (ii), (iv)]:

(i) We shall say that Z is a compactified model of Z over OK if Z is a proper,
flat, normal scheme over OK whose generic fiber is the [uniquely deter-
mined, up to unique isomorphism] smooth compactification of Z over K.

(ii) Suppose that the cusps of Z are K-rational. Then we shall say that Z is
a compactified stable model of Z over OK if Z is a compactified model of
Z over OK such that the following conditions hold:

• the geometric special fiber of Z is a semistable curve [i.e., a reduced,
connected curve each of whose nonsmooth points is an ordinary dou-
ble point];

• the images of the sections Spec OK → Z determined by the cusps of
Z [which we shall refer to as cusps of Z] lie in the smooth locus of Z
and do not intersect each other.

• Z, together with the cusps of Z, determines a pointed stable curve.

Then one verifies immediately, by considering blow-ups of compactified models
at specified closed points [cf. also Remark 2.2.2; Proposition 2.4, (iii), (iv)],
that, if Σ is a set of cardinality ≥ 2 that contains p [cf. the situation discussed
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in Theorem A below], then the condition of satisfying Σ-RNS discussed above
is in fact equivalent to the following property, which clarifies the meaning of
“resolution of nonsingularities”:

Let Z be a compactified model of Z over OK ; z ∈ Zs a closed point.
Then, after possibly replacing K by a suitable finite extension field
of K, there exist

• a connected geometrically pro-Σ finite étale Galois covering
Y → Z of hyperbolic curves over K,

• a compactified stable model Y of Y over OK ,

• a morphism Y → Z of compactified models over OK that re-
stricts to the finite étale Galois covering Y → Z,

• an irreducible component D of Ys whose normalization is of
genus ≥ 1, and whose image in Zs is z ∈ Zs.

This alternative formulation of the condition of satisfying Σ-RNS is useful
to keep in mind when considering the relationship between Theorem A below
and the following result due to A. Tamagawa [cf. [Tama2]], which played an
important role in motivating the following result due to E. Lepage [cf. [Lpg1]]:

• Suppose that Σ = Primes, that the residue field of K is algebraic over the
finite field of cardinality p, and that Z is the compactified stable model
of Z over OK . Then there exist a connected finite étale Galois covering
Y → Z and an irreducible component D of Ys as in the above alternative
formulation [cf. [Tama2], Theorem 0.2, (v)].

• Suppose that Σ = Primes, that K is a p-adic local field, and that Z is a
hyperbolic Mumford curve over K. Then Z satisfies Σ-RNS [cf. [Lpg1],
Theorem 2.7].

Our first main result may be regarded as a generalization of these results [cf.
Theorem 2.17]:

Theorem A (Resolution of nonsingularities for arbitrary hyperbolic
curves over p-adic local fields). Suppose that Σ ⊆ Primes is a subset of
cardinality ≥ 2 that contains p, and that K is a p-adic local field. Let X be a
hyperbolic curve over K; L a mixed characteristic complete discrete valuation
field of residue characteristic p that contains K as a topological subfield. Then
XL satisfies Σ-RNS if and only if the residue field of L is algebraic over the
finite field of cardinality p.

In the remainder of the present Introduction, we discuss various anabelian
applications/consequences of Theorem A.

First, by applying a certain sophisticated version of the argument applied
in the proof of [Tsjm], Theorem 2.2, we obtain the following consequence of
Theorem A concerning the determination of closed points on arbitrary hyperbolic
curves via geometric tempered fundamental groups, which generalizes [Tsjm],
Theorem 2.2 [cf. Corollary 2.5, (ii), which in fact applies to hyperbolic curves
over more general p-adic fields; Remark 2.5.1]:
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Theorem B (Determination of closed points on arbitrary p-adic hy-
perbolic curves by geometric tempered fundamental groups). Suppose
that Σ ⊆ Primes is a subset of cardinality ≥ 2 that contains p. Let X†, X‡

be hyperbolic curves over Qp. Write X̃† → X†, X̃‡ → X‡ for the univer-

sal geometrically pro-Σ coverings corresponding to Πtp
X† , Π

tp
X‡ , respectively. Let

x† ∈ X†(Cp), x
‡ ∈ X‡(Cp). Write X†

x† (respectively, X‡
x‡) for the hyperbolic

curve X†
Cp
\{x†} (respectively, X‡

Cp
\{x‡}) over Cp. Let

σ̃ : Πtp

X†
x†

∼→ Πtp

X‡
x‡

be an isomorphism of topological groups that fits into a commutative diagram

Πtp

X†
x†

∼−−−−→
σ̃

Πtp

X‡
x‡y y

Πtp
X†

∼−−−−→
σ

Πtp
X‡ ,

where the vertical arrows are the natural surjections [determined up to com-
position with an inner automorphism] induced by the natural open immersions

X†
x† ↪→ X†

Cp
, X‡

x‡ ↪→ X‡
Cp

of hyperbolic curves; the lower horizontal arrow σ

is the isomorphism of topological groups [determined up to composition with
an inner automorphism] induced by a(n) [uniquely determined] isomorphism
σX : X† ∼→ X‡ of schemes over Qp. Then

x‡ = σX(x†).

Next, we consider applications of Theorem A to Grothendieck Conjecture-
type results in anabelian geometry. We begin by recalling the following question,
which may be considered as an absolute version of the Grothendieck Conjecture
for hyperbolic curves over p-adic local fields:

Let X†, X‡ be hyperbolic curves over p-adic local fields. Then is the
natural map

Isom(X†, X‡) −→ OutIsom(ΠX† ,ΠX‡)

bijective?

This question may be regarded as one of the major open questions in anabelian
geometry. In this context, we recall that, in the case of the relative version of
the Grothendieck Conjecture for arbitrary hyperbolic curves, many satisfactory
results have been obtained [cf. [PrfGC], Theorem A; [Tama1], Theorem 0.4;
[LocAn], Theorem A]. In particular, the first author of the present paper gave a
complete affirmative answer to the original question posed by A. Grothendieck
[i.e., the original “Grothendieck Conjecture”] in quite substantial generality [cf.
[LocAn], Theorem A; [AnabTop], Theorem 4.12]. On the other hand, in the case
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of the absolute version of the Grothendieck Conjecture for arbitrary hyperbolic
curves over p-adic local fields [i.e., the question of the above display], analogous
results had not been obtained previously, due to the existence of outer isomor-
phisms of the absolute Galois groups of p-adic local fields that do not arise from
isomorphisms of fields [cf., e.g., [NSW], the Closing Remark preceding Theorem
12.2.7]. In this direction, in some sense the strongest known result, prior to the
present paper, was the following result [cf. [AbsTopII], Corollary 2.9]:

Suppose that Σ ⊆ Primes is a subset of cardinality ≥ 2 that contains
p. Let X†, X‡ be hyperbolic curves over p-adic local fields. Write

OutIsomD(Π
(Σ)

X† ,Π
(Σ)

X‡ ) ⊆ OutIsom(Π
(Σ)

X† ,Π
(Σ)

X‡ )

for the subset determined by the isomorphisms that induce bijections
between the respective sets of decomposition subgroups associated to
the closed points of X† and X‡. Then the natural map

Isom(X†, X‡) −→ OutIsomD(Π
(Σ)

X† ,Π
(Σ)

X‡ )

is bijective.

Moreover, in [AbsTopII], [AbsTopIII], the first author developed a technique,
called “Belyi cuspidalization”, that allows one to reconstruct the decomposition
subgroups associated to the closed points of strictly Belyi-type hyperbolic curves
and proved that an absolute version of the Grothendieck Conjecture holds for
such curves [cf. [AbsTopIII], Theorem 1.9].

In the present paper, we apply Theorem A, together with some combinatorial
anabelian geometry, to reconstruct the set of Cp-valued points of a hyperbolic
curve over Qp from its geometric tempered fundamental group [cf. Corollary
3.10, which in fact applies to hyperbolic curves over more general p-adic fields]:

Theorem C (Reconstruction of Cp-valued points via geometric tem-
pered fundamental groups). Suppose that Σ ⊆ Primes is a subset of cardi-

nality ≥ 2 that contains p. Let X be a hyperbolic curve over Qp. Write X̃ → X

for the universal pro-Σ covering corresponding to Πtp
X [so Gal(X̃/X) may be

identified with the pro-Σ completion of Πtp
X ]. Then the set X̃(Cp) equipped

with its natural action by Gal(X̃/X) — hence also, by passing to the set of

Gal(X̃/X)-orbits, the quotient set X̃(Cp) ↠ X(Cp) — may be reconstructed,
in a purely combinatorial/group-theoretic way and functorially with respect to
isomorphisms of topological groups, from the underlying topological group of Πtp

X .

Note that it follows immediately from Theorem C that, under the assump-
tion that Σ ⊆ Primes is a subset of cardinality ≥ 2 that contains p, one
may reconstruct the set of closed points, hence also the set of associated de-
composition subgroups, of a hyperbolic curve over a p-adic local field, in a
purely combinatorial/group-theoretic way and functorially with respect to iso-
morphisms of topological groups, from its geometrically pro-Σ étale fundamental
group [cf. the proof of Theorem 3.11 for more details]. Here, it is also interesting
to observe that
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this reconstruction of the set of decomposition subgroups asso-
ciated to closed points from the geometrically pro-Σ étale funda-
mental group of a hyperbolic curve over a p-adic local field may be
thought of as a sort of a weak version of the Section Conjecture.

In particular, by applying [AbsTopII], Corollary 2.9, together with some com-
binatorial anabelian geometry, we obtain a complete affirmative answer to the
question considered above, i.e., an absolute version of the Grothendieck Con-
jecture for arbitrary hyperbolic curves, as well as for the configuration spaces
associated to such hyperbolic curves, over p-adic local fields [cf. Theorems 3.12;
3.13]:

Theorem D (Absolute version of the Grothendieck Conjecture for
arbitrary hyperbolic curves over p-adic local fields). Suppose that Σ ⊆
Primes is a subset of cardinality ≥ 2 that contains p. Let X†, X‡ be hyperbolic
curves over p-adic local fields. Then the natural map

Isom(X†, X‡) −→ OutIsom(Π
(Σ)

X† ,Π
(Σ)

X‡ )

is bijective.

Theorem E (Absolute version of the Grothendieck Conjecture for con-
figuration spaces associated to arbitrary hyperbolic curves over p-adic
local fields). Let X†, X‡ be hyperbolic curves over p-adic local fields; n†, n‡

positive integers. Write X†
n† (respectively, X‡

n‡) for the n†-th (respectively, n‡-

th) configuration space associated to X† (respectively, X‡). Then the natural
map

Isom(X†
n† , X

‡
n‡) −→ OutIsom(ΠX†

n†
,ΠX‡

n‡
)

is bijective.

In the context of the relationship between the theory developed in the present
paper and the Section Conjecture, it is of interest to note the following conse-
quences of the theory underlying Theorem C [cf. Proposition 2.4, (vii); Propo-
sition 3.5, (iii); Proposition 3.9, (iv) — all of which in fact apply to hyperbolic
curves over more general p-adic fields]:

Theorem F (Consequences related to the Section Conjecture over
p-adic fields). Suppose that Σ ⊆ Primes is a subset that contains p, and that
the residue field of K is an algebraic extension of the finite field of cardinality
p. Let l ∈ Σ \ {p}; H ⊆ GK a closed subgroup such that the intersection H ∩ IK
of H with the inertia subgroup IK of GK admits a surjection to [the profinite
group] Zl. Write Ω for the p-adic completion of K; ΩH ⊆ Ω for the subfield of
Ω fixed by H. Then the following properties hold:

(i) Let X be a proper hyperbolic curve over K that is in fact defined over
a p-adic local field contained [in a fashion compatible with the respective

topologies] in K, X̃ → X a universal geometrically pro-Σ covering, sX :
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H → Π
(Σ)
X

def
= Gal(X̃/X) a section of the restriction to H of the natural

surjection Π
(Σ)
X ↠ GK . Write X̃an for the topological pro-Berkovich space

associated to [i.e., the inverse limit of the underlying topological spaces

of the Berkovich spaces associated to the finite subcoverings of] X̃. Then

there exists at most one point ∈ X̃an that is fixed by the restriction, via

sX , to H of the natural action of Π
(Σ)
X on the topological pro-Berkovich

space X̃an; if, moreover, the restriction to H of the l-adic cyclotomic
character of K has open image, then there exists a unique such point
∈ X̃an. Finally, sX arises from an ΩH-rational point ∈ X(ΩH) if and

only if its image is a maximal stabilizer ⊆ Π
(Σ)
X ×GK

H of a point ∈ X̃an.

(ii) Suppose that the restriction to H of the l-adic cyclotomic character
of K has open image. Let Y , Z be [not necessarily proper!] hyperbolic
curves over K that are in fact defined over a p-adic local field contained
[in a fashion compatible with the respective topologies] in K; Ỹ → Y ,

Z̃ → Z universal geometrically pro-Σ coverings of Y , Z, respectively;

f : Y → Z a dominant morphism over K; sY : H → Π
(Σ)
Y

def
= Gal(Ỹ /Y ),

sZ : H → Π
(Σ)
Z

def
= Gal(X̃/X) sections of the restrictions to H of the

respective natural surjections Π
(Σ)
Y ↠ GK , Π

(Σ)
Z ↠ GK such that sY is

mapped, up to Π
(Σ)
Z -conjugation, by f to sZ via the map induced by f on

geometrically pro-Σ fundamental groups. Then sY arises from an ΩH-
rational point ∈ Y (ΩH) if and only if sZ arises from an ΩH-rational point
∈ Z(ΩH).

Here, we observe in passing that it follows immediately from Theorem F,
(ii) [i.e., as stated above], together with [BSC], Theorem 5.33, that a similar
result to the result stated in Theorem F, (ii), holds if the field K is replaced by
a number field, but [since global issues over number fields lie beyond the scope
of the present paper] we shall not discuss this in detail in the present paper.

Next, we recall that one of the key ingredients in the theory of p-adic arith-
metic cuspidalizations developed in [Tsjm], §2, is Lepage’s resolution of nonsin-
gularities [i.e., [Lpg1], Theorem 2.7], which may be regarded as a special case of
Theorem A. Our next result is obtained by applying this theory of p-adic arith-
metic cuspidalizations [i.e., [Tsjm], §2], together with some elementary observa-
tions concerning the lengths of nodes of stable models of hyperbolic curves [cf.
Proposition 3.15], to prove that the various p-adic versions of the Grothendieck-
Teichmüller group that appear in the literature [cf. [Tsjm], Remark 2.1.2] in
fact coincide and are commensurably terminal in the Grothendieck-Teichmüller
group [cf. Theorem 3.16; Corollary 3.17]:

Theorem G (Equality and commensurable terminality of various p-adic
versions of the Grothendieck-Teichmüller group). Suppose that Σ =

Primes. Write X
def
= P1

Qp
\ {0, 1,∞};

GT ⊆ Out(ΠX)
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for the Grothendieck-Teichmüller group [cf. [CmbCsp], Remark 1.11.1];

GTM ⊆ GT (⊆ Out(ΠX))

for the metrized Grothendieck-Teichmüller group [cf. [CbTpIII], Remark 3.19.2];

GTtp
p

def
= GT ∩ Out(Πtp

X ) ⊆ Out(ΠX)

[cf. the subsection in Notations and Conventions entitled “Fundamental groups”;
[Tsjm], Definition 2.1]. Then the natural inclusion

GTM ⊆ GTtp
p

of subgroups of GT is an equality. In particular, it holds that

GTM = GTp = GTG = GTtp
p

[cf. [Tsjm], Remark 2.1.2]. Moreover, GTM = GTp = GTG = GTtp
p is com-

mensurably terminal in GT, i.e., the commensurator CGT(GTM) of GTM in
GT is equal to GTM.

Note that the commensurable terminality in the final portion of Theorem G
may be regarded as an affirmative answer to the question posed in the discussion
immediately preceding Theorem E in [CbTpIII], Introduction.

Finally, we conclude with an interesting complement to the theory of p-adic
arithmetic cuspidalizations by applying Theorem C, together with the theory
of metric-admissibility developed in [CbTpIII], §3, to construct certain p-adic
arithmetic cuspidalizations of the geometric tempered fundamental group of a
hyperbolic curve over Qp equipped with certain relatively mild auxiliary data
[cf. Definition 3.19; Theorem 3.20; Remarks 3.20.1, 3.20.2].

The contents of the present paper may be summarized as follows:
In §1, we discuss in detail certain local computations — motivated by [Lpg1],

Proposition 2.4, but formulated entirely in the language of schemes and for-
mal schemes, i.e., without resorting to the use of notions from the theory of
Berkovich spaces — concerning iterates of the p-th power morphism of the mul-
tiplicative group scheme Gm over the ring of integers of a mixed characteristic
discrete valuation field of residue characteristic p. By restricting such mor-
phisms to suitable formal neighborhoods, we conclude that smooth curves of
genus ≥ 1 appear in the special fibers of suitable models of the domain curves
of such morphisms, i.e., as certain Artin-Schreier coverings of curves of genus 0
[cf. Proposition 1.6; Remark 1.6.2].

In §2, we begin by discussing various generalities concerning models of a
hyperbolic curve over a mixed characteristic complete discrete valuation field
[cf. Definition 2.1; Proposition 2.3]. In particular, we discuss the definition of
the notion of Σ-RNS [cf. Definition 2.2, (vii)], together with closely related basic
properties of this notion [cf. Propositions 2.4; Corollary 2.5]. Another important
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notion in this context is the purely combinatorial notion of VE-chains associated
to a hyperbolic curve over a mixed characteristic complete discrete valuation
field [cf. Definition 2.2, (iii)]. This notion is closely related to the topological
Berkovich space associated to the hyperbolic curve [cf. Proposition 2.3, (vii),
(viii)]. Finally, we apply certain constructions involving p-divisible groups to
extend the Artin-Schreier coverings constructed locally in §1 to coverings of an
arbitrary hyperbolic curve over a p-adic local field [cf. Propositions 2.12, 2.13;
Theorem 2.16]. This leads naturally to a proof of Theorem A [cf. Theorem 2.17],
hence also, by combining Theorem A with the theory of VE-chains developed in
the earlier portion of §2, together with some combinatorial anabelian geometry,
of Theorem B.

In §3, we begin by recalling the well-known classification of the points of
the topological Berkovich space associated to a proper hyperbolic curve over a
mixed characteristic complete discrete valuation field via the notion of type i
points, where i ∈ {1, 2, 3, 4}. Next, we introduce a certain combinatorial clas-
sification of the VE-chains considered in §2 and observe that this classification
of VE-chains leads naturally to a purely combinatorial characterization of the
well-known classification via type i points mentioned above. We then apply the
theory of §2 to give a group-theoretic characterization, motivated by [but by no
means identical to] the characterization of [Lpg2], §4, of the type i points in
terms of the geometric Σ-tempered fundamental group of the hyperbolic curve.
The theory surrounding this group-theoretic characterization leads naturally
to proofs of Theorems C and F. Moreover, by combining this group-theoretic
characterization with [AbsTopII], Corollary 2.9; [HMM], Theorem A, we obtain
proofs of Theorems D and E [cf. Theorems 3.12; 3.13]. We then switch gears
to discuss metric-admissibility for p-adic hyperbolic curves. This discussion
of metric-admissibility yields, in particular, a proof of Theorem G and leads
naturally to the discussion of p-adic arithmetic cuspidalizations associated to
geometric tempered fundamental groups equipped with certain relatively mild
auxiliary data [cf. Definition 3.19; Theorem 3.20; Remarks 3.20.1, 3.20.2] men-
tioned above.
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Notations and Conventions

Numbers:

The notation Primes will be used to denote the set of prime numbers. The
notation N will be used to denote the set of nonnegative integers. The notation
Q≥0 will be used to denote the additive monoid of nonnegative rational numbers.
The notation Z will be used to denote the additive group or ring of integers. The
notation Q will be used to denote the field of rational numbers. The notation
R will be used to denote the field of real numbers. For each x ∈ R, the notation
⌊x⌋ will be used to denote the greatest integer ≤ x. If p is a prime number,
then the notation Qp will be used to denote the field of p-adic numbers; the
notation Zp will be used to denote the additive group or ring of p-adic integers;
the notation Qp will be used to denote an algebraic closure of Qp; the notation

Cp will be used to denote the p-adic completion of Qp. We shall refer to a finite
extension field of Qp as a p-adic local field.

Monoids:

Let M be a commutative monoid. In this subsection, we regard the set
of positive integers N≥1 as a directed set via its multiplicative structure, i.e.,

i ≤ j ⇔ i | j. For i ∈ N≥1, write Mi
def
= M . For i, j ∈ N≥1 such that

i ≤ j, write ϕi,j : Mi → Mj for the homomorphism of monoids obtained by
multiplication by j

i . Then we shall refer to the inductive limit of the inductive
system {Mi, ϕi,j} on the directed set N≥1 as the perfection of M .

Rings and fields:

Let R be a ring. Then we shall write R× for the multiplicative group of
units of the ring.

Let F be a perfect field, p a prime number. Then the notation F will be

used to denote an algebraic closure of F ; GF
def
= Gal(F/F ).

Suppose that F is a valuation field, i.e., a field equipped with a valuation
map [cf., e.g., the axioms of [EP], Eq. (2.1.2)]. Then we shall write OF for the
ring of integers of F ; mF for the maximal ideal of OF . Thus, the valuation map
on F induces an isomorphism of ordered abelian groups between F×/O×

F and
the value group of the valuation field F . In particular, any valuation map on
the field F is determined, up to unique isomorphism [in the evident sense], by
the ring of integers ⊆ F associated to the valuation map. In the present paper,

we shall use the term valuation to refer to an isomorphism class of
valuation maps on a field F , i.e., the collection of valuation maps
that give rise to the same ring of integers ⊆ F .

We shall refer to a specific valuation map within a given isomorphism class of
valuation maps on a field as a normalized valuation, i.e., an isomorphism class of
valuation maps on the field, together with a specific valuation map [belonging to
this class], which we shall refer to as a normalization. If the value group of the
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valuation field F is isomorphic, as an ordered abelian group, to a subgroup of
the underlying additive group of R, then we shall say that F is a real valuation
field. If F is a mixed characteristic real valuation field of residue characteristic
p, then the notation vp will be used to denote the normalized valuation on F
whose normalization is determined by the condition that vp(p) = 1 ∈ R. If F is
a henselian valuation field of characteristic 0, then we shall write IF ⊆ GF for
the inertia subgroup; F ⊆ F ur (⊆ F ) for the maximal unramified extension. If

F is a real henselian valuation field of characteristic 0, then we shall write F̂ ur

for the completion of F ur [cf. Remark 2.2.4 for more details].

Topological groups:

Let G be a topological group; H ⊆ G a closed subgroup of G. Then we shall
write Gab for the abelianization of G; CG(H) for the commensurator of H ⊆ G,
i.e.,

CG(H)
def
= {g ∈ G | H ∩ g ·H · g−1 is of finite index in H and g ·H · g−1}.

We shall say that the closed subgroup H is commensurably terminal in G if
H = CG(H). Let Σ ⊆ Primes be a nonempty subset. Then we shall write GΣ

for the pro-Σ completion of G.
We shall write Aut(G) for the group of continuous automorphisms of the

topological group G, Inn(G) ⊆ Aut(G) for the subgroup of inner automorphisms

of G, and Out(G)
def
= Aut(G)/Inn(G). Suppose that G is center-free. Then we

have a natural exact sequence of groups

1 −→ G (
∼→ Inn(G)) −→ Aut(G) −→ Out(G) −→ 1.

If J is a group, and ρ : J → Out(G) is a homomorphism, then we shall denote
by

G
out
⋊ J

the group obtained by pulling back the above exact sequence of groups via ρ.
Thus, we have a natural exact sequence of groups

1 −→ G −→ G
out
⋊ J −→ J −→ 1.

Suppose further that the topology of G admits a countable basis consisting of
characteristic open subgroups of G. Then one verifies immediately that the
topology of G induces a natural topology on the group Aut(G), hence on the
group Out(G). In particular, one verifies easily that if J is a topological group,

and ρ : J → Out(G) is continuous, then G
out
⋊ J admits a natural topological

group structure.
Let G1, G2 be profinite groups. Then we shall write

OutIsom(G1, G2)
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for the set of isomorphisms of profinite groups, considered up to composition
with an inner automorphism arising from an element ∈ G2.

Semi-graphs:

Let Γ be a connected semi-graph [cf. [SemiAn], §1]. Then we shall refer to
the dimension over Q of the first homology module of Γ [with coefficients in Q]
H1(Γ,Q) as the loop-rank of Γ. We shall say that Γ is untangled if every closed
edge of Γ abuts to two distinct vertices.

Schemes:

Let K be a field; K ⊆ L a field extension; X an algebraic variety [i.e., a
separated, geometrically integral scheme of finite type] over K. Then we shall

write XL
def
= X ×K L. Suppose that X is a smooth proper curve [i.e., a smooth,

proper algebraic variety of dimension 1] over K. Then we shall write J(X) for
the Jacobian of X. Let p be a prime number; A a semi-abelian variety or a
p-divisible group over K. Then we shall write TpA for the p-adic Tate module
associated to [the p-power torsion points valued in some fixed algebraic closure
of K of] A. Suppose that K is a valuation field. Let X be an OK-scheme. Then
we shall write Xs for the special fiber of X [i.e., the fiber of X over the closed
point of Spec OK ].

Let S1, S2 be schemes. Then we shall write

Isom(S1, S2)

for the set of isomorphisms of schemes between S1 and S2.

Curves:

We shall use the term “hyperbolic curve” [i.e., a family of hyperbolic curves
over the spectrum of a field] as defined in [MT], §0. We shall use the term “n-th
configuration space” as defined in [MT], Definition 2.1, (i).

Log schemes:

If X log is a fine log scheme, then we shall write

• X for the underlying scheme of X log;

• MX for the étale sheaf of monoids on X that defines the log structure of
X log;

• MX
def
= MX/O×

X , which we shall refer to as the characteristic of X log [cf.
[MT], Definition 5.1, (i)].

LetK be a complete discrete valuation field; Y a hyperbolic curve overK; Y a

compactified semistable model of Y over OK [cf. Definition 2.1, (ii)]. Write S
def
=

Spec OK ; Slog for the log scheme determined by the log structure associated
to the closed point of S. Then it follows immediately from [Hur], §3.7, §3.8,

13



that the multiplicative monoid of sections of OY that are invertible on [the
open subscheme of Y determined by] Y determines a natural log structure on
Y. Denote the resulting log scheme by Y log. Then one verifies immediately
that the natural morphism of schemes Y → S extends to a a proper, log smooth
morphism Y log → Slog of fine log schemes. Let y be a geometric point of Ys.
Write Mpf

y for the perfection of the stalk of the characteristic MY at y. Then
one verifies immediately that, if the image of y in Ys is a smooth point that is
not a cusp (respectively, a cusp; a node), then

Mpf
y

∼→ Q≥0 (respectively, Mpf
y

∼→ Q≥0 ×Q≥0; M
pf
y

∼→ Q≥0 ×Q≥0).

Fundamental groups:

For a connected noetherian scheme S, we shall write ΠS for the étale funda-
mental group of S, relative to a suitable choice of basepoint. Let Σ ⊆ Primes
be a nonempty subset; K a perfect field; X an algebraic variety over K. Then
we shall write

∆X
def
= ΠXK

; Π
(Σ)
X

def
= ΠX/Ker(∆X ↠ ∆Σ

X),

where ∆X ↠ ∆Σ
X denotes the natural surjection. We shall refer to ∆Σ

X (respec-

tively, Π
(Σ)
X ) as the geometric pro-Σ fundamental group (respectively, geometri-

cally pro-Σ fundamental group) of X.
Let p be a prime number, Σ ⊆ Primes a nonempty subset. Suppose thatK is

a mixed characteristic complete discrete valuation field of residue characteristic
p. Write Ω for the p-adic completion of K. Let F be one of the [topological]
fields K, K, and Ω; X a hyperbolic curve over F . If F = Ω, then we shall write

Πtp
X

for the Σ-tempered fundamental group ofX, i.e., in the terminology of [CbTpIII],
Definition 3.1, (ii), the “Σ-tempered fundamental group” of the smooth log curve
over F determined by X [where we note that one verifies immediately that the

field “□K
∧
” of loc. cit. may be taken to to be the field F = Ω of the present

discussion, and that the discussion of loc. cit. may be applied to the situation of
the present discussion even if the X of the present discussion does not descend
to the field “□K” of loc. cit.]. Here, we recall that, when F = Ω, it follows
immediately from [André], Proposition 4.3.1 [and the surrounding discussion],
that the universal topological coverings of finite coverings corresponding to char-
acteristic open subgroups of Πtp

X of finite index determine a countable collection

of characteristic open subgroups of Πtp
X that form a basis of the topology of Πtp

X ,

hence determine a natural topology on Out(Πtp
X ). Thus, if F = K, then we

obtain a natural continuous outer action

GK −→ Out(Πtp
XΩ

)
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and hence, since Πtp
XΩ

is center-free [cf., e.g., [CbTpIII], Proposition 3.3, (i), (ii);
[MT], Proposition 1.4], a topological group

Πtp
X

def
= Πtp

XΩ

out
⋊ GK ,

which we refer to as the geometrically Σ-tempered fundamental group of X.
Moreover, if F = K, then Πtp

X is equipped with a natural continuous surjection

Πtp
X ↠ GK , whose kernel [which in fact may be naturally identified with Πtp

XΩ
] we

denote by ∆Σ-tp
X

def
= Πtp

XΩ
and refer to as the geometric Σ-tempered fundamental

group of X. If F = K, then, after possibly replacing K by a finite extension of
K, we may assume that X descends to a hyperbolic curve XK over K [so that
X may be naturally identified with “(XK)K”], and we shall refer to

Πtp
X

def
= Πtp

XΩ

as the Σ-tempered fundamental group of X. Finally, we note that, in the case
where F = K, it follows immediately from [CanLift], Proposition 2.3, (ii) [cf.
also [CbTpIII], Proposition 3.3, (i)], together with the definition of the Σ-
tempered fundamental group, that the pro-Σ completion of Πtp

X = Πtp
XΩ

may
be naturally identified, for suitable choices of basepoints, with the geometric
pro-Σ fundamental group ∆Σ

X of X.

1 Local construction of Artin-Schreier extensions
in the special fiber

Let p be a prime number. In the present section, we perform various local
computations concerning iterates of the p-th power morphism of the multiplica-
tive group scheme Gm over the ring of integers of a mixed characteristic discrete
valuation field of residue characteristic p. As a consequence, by restricting such
morphisms to suitable formal neighborhoods, we conclude that smooth curves
of genus ≥ 1 appear in the special fibers of suitable models of the domain curves
of such morphisms [cf. Proposition 1.6; Remark 1.6.2]. This observation will be
applied in §2 to prove that arbitrary hyperbolic curves over p-adic local fields ad-
mit resolution of nonsingularities. The contents of this section may be regarded
as an alternative and somewhat more detailed discussion of [Lpg1], Proposition
2.4, that is phrased entirely in the language of schemes and formal schemes and
does not resort to the use of Berkovich spaces.

First, we begin with several elementary lemmas concerning the p-adic valu-
ations of the coefficients of certain polynomials and power series [cf. Lemmas
1.1, 1.2, 1.3].
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Lemma 1.1. Let K be a mixed characteristic discrete valuation field of residue
characteristic p. Suppose that K contains a primitive p-th root of unity ζp ∈ K.

Write π
def
= 1− ζp ∈ K;

f(x)
def
= π−p

(
(1 + πx)p − 1

)
∈ K[x],

where x denotes an indeterminate. Then it holds that

f(x)− (xp − x) ∈ x ·mK [x] ⊆ OK [x].

Proof. First, write c
def
= p+ (−π)p−1. Then since π = 1− ζp ∈ K, it holds that

c = p+ (−π)p−1 = p+ (−π)p−1 + π−1((1− π)p − 1).

Observe that these equalities imply that vp(c) > 1. In particular, it holds that
vp(p+ (−π)p−1) > 1, hence that vp(p+ πp−1) > 1.

Next, observe that, if we write

f(x) =
∑

1≤i≤p

aix
i ∈ K[x],

then since vp(p) = 1 = vp(π
p−1), and vp(p+ πp−1) > 1, it holds that

a1 =
p

πp−1
, ap = 1, vp(a1 + 1) > 0, vp(ai) > 0 (∀i ̸= 1, p).

Thus, we conclude that f(x) − (xp − x) ∈ x · mK [x]. This completes the proof
of Lemma 1.1.

Lemma 1.2. Let K be a mixed characteristic discrete valuation field of residue
characteristic p; n a positive integer. Write

f(x) = 1 +
∑
i≥1

qix
i ∈ K[[x]]

— where x denotes an indeterminate — for the n-th root of 1+x ∈ K[[x]] whose
constant term is equal to 1. Then it holds that

vp(q1) = −vp(n), vp(qi) ≥ −ivp(n)− vp(i!) ≥ −i
(
vp(n) +

1

p− 1

)
(∀i ≥ 2)

[cf. the well-known elementary fact that vp(i!) ≤ i
p−1 ]. If, moreover, n is prime

to p, then vp(qi) ≥ 0 for each positive integer i.

Proof. First, we observe, by considering the Taylor expansion of (1 + x)
1
n at 0,

that

qi =
1

i!

∏
0≤k≤i−1

(
1

n
− k

)
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for each positive integer i. The equality and inequalities of the second display
of the statement of Lemma 1.2 follow immediately.

Next, suppose that n is prime to p. For each positive integer m, write

Qm ⊆ K for the OK-subalgebra generated by {qj}1≤j≤m−1. Write Q0
def
= OK .

Then, by comparing the coefficients of xm in the left- and right-hand sides of
the equality (

1 +
∑
i≥1

qix
i

)n

= 1 + x,

we conclude that nqm ∈ Qm−1. In particular, since n is prime to p, it holds that
qm ∈ Qm−1. Thus, by induction, we conclude that qi ∈ OK for each positive
integer i. This completes the proof of Lemma 1.2.

Lemma 1.3. Let K be a mixed characteristic discrete valuation field of residue
characteristic p; n a positive integer;

g(s) = 1 +
∑
i≥1

ais
i ∈ OK [[s]] \ {1},

where s denotes an indeterminate. Write i0 for the smallest positive integer
i such that ai ̸= 0; 0s for the OK-valued point of Spec OK [[s]] obtained by
mapping s 7→ 0. Then the following hold:

(i) Suppose that vp(ai) ≥ 2vp(n) for each i ≥ 1. Then g(s) admits an n-th
root

1 +
∑
i≥1

bis
i ∈ OK [[s]].

(ii) Suppose that there exists an element x ∈ OK such that vp(x) =
1

3i0(p−1) .

Then there exist

• a positive integer j,

• an element b ∈ OK satisfying the inequalities vp(b) ≥ 1 and 2
3(p−1) ≤

vp(b)− ⌊vp(b)⌋ < 1
p−1 , and

• an isomorphism h : OK [[s]]
∼→ OK [[s]] of topological OK-algebras

such that h maps 0s 7→ 0s and h(g(xjs)) = 1 + bsi0 .

(iii) Suppose that g(s) = 1+ai0s
i0 , where ai0 satisfies the inequalities vp(ai0) ≥

1 and 2
3(p−1) ≤ vp(ai0) − ⌊vp(ai0)⌋ < 1

p−1 . Write µ
def
= ⌊vp(ai0)⌋ − 1 ≥ 0.

Then g(s) admits a pµ-th root

g(s)
1

pµ = 1 +
∑
i≥1

ci0is
i0i ∈ OK [[s]],

where 1 + 2
3(p−1) ≤ vp(ci0) <

p
p−1 , vp(c2i0) ≥ 2

(
1 + 2

3(p−1)

)
− 1, and

vp(ci0i) ≥ i
(
1− 1

3(p−1)

)
for each positive integer i > 2.
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(iv) In the notation of (iii), suppose that K contains a primitive p-th root of
unity ζp ∈ K and an element c ∈ K such that

ci0 =
πp

ci0
,

where we write π
def
= 1 − ζp. [Note that since vp(ci0) <

p
p−1 , it holds that

vp(c) > 0.] Write∑
i≥1

di0is
i0i def

= π−p(g(cs)
1

pµ − 1) ∈ K[[s]].

Then it holds that di0 = 1, vp(di0) = 0 > vp(c
i0) − p

p−1 , vp(d2i0) >

sup{vp(c2i0)− p
p−1 , 0}, and

vp(di0i) > i · sup
{(

1− 1

3(p− 1)

)
, vp(c

i0)

}
− p

p− 1
≥ 0

for each positive integer i > 2. Moreover,

vp(di0i) > vp(c
i0i)

for each sufficiently large positive integer i.

Proof. First, we verify assertion (i). Note that g(s) admits an n-th root

1 +
∑
i≥1

bis
i ∈ K[[s]].

Thus, it suffices to verify that vp(bi) ≥ 0 for each positive integer i. Note that
if vp(n) ≥ 1 (≥ 1

p−1 ), then

2ivp(n)− i
(
vp(n) +

1

p− 1

)
≥ 0.

Thus, by applying Lemma 1.2 [where we take “x” to be the element
∑

i≥1 ais
i],

together with our assumption that vp(ai) ≥ 2vp(n) for each positive integer i,
we conclude that vp(bi) ≥ 0 for each positive integer i. This completes the proof
of assertion (i).

Next, we verify assertion (ii). Fix an element x ∈ OK such that vp(x) =
1

3i0(p−1) . For each pair of positive integers (i, j), write bi,j
def
= xijai. Note that it

follows immediately from our assumption on vp(x) [i.e., by thinking of the real
line R modulo integral multiples of 1

3(p−1) = i0vp(x)] that there exists a positive

integer j such that

• vp(bi0,j) ≥ 1,

• 2
3(p−1) ≤ vp(bi0,j)− ⌊vp(bi0,j)⌋ <

1
p−1 , and
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• vp(bi,j) ≥ vp(bi0,j) + 2vp(i0) for each positive integer i > i0.

Fix such a positive integer j and write b
def
= bi0,j . Then the existence of an

isomorphism h : OK [[s]]
∼→ OK [[s]] of topological OK-algebras such that h

maps 0s 7→ 0s and h(g(xjs)) = 1 + bsi0 follows immediately from Lemma 1.3,
(i), where we take “n” to be i0 and “g(s)” to be

g†(s)
def
= b−1s−i0(g(xjs)− 1)

[so g(xjs) = 1+bsi0g†(s)]. [That is to say, h is defined by taking h(s(g†(s))
1
n )

def
=

s, where “(g†(s))
1
n ” denotes the n-th root of Lemma 1.3, (i).] This completes

the proof of assertion (ii).
Assertion (iii) follows immediately from Lemma 1.2 [applied to x = ai0s

i0 ],
together with the elementary fact that vp(i!) ≤ 1 for i = 2.

Finally, we verify assertion (iv). It follows immediately from the various
definitions involved that

di0i = ci0ic
−i
i0
πp(i−1).

In particular, it holds that di0 = 1. Moreover, since vp(π) =
1

p−1 , and vp(ci0) <
p

p−1 [cf. Lemma 1.3, (iii)], it holds that

vp(di0i) = vp(ci0i)− ivp(ci0) +
p(i− 1)

p− 1
> vp(ci0i)−

p

p− 1
.

Suppose that i = 2 (respectively, i ≥ 3). Then it follows immediately from
Lemma 1.3, (iii), that

vp(ci0i)−
p

p− 1
≥ 2

(
1 +

2

3(p− 1)

)
− 1− p

p− 1
=

1

3(p− 1)
> 0

(respectively,

vp(ci0i)−
p

p− 1
≥ i

(
1− 1

3(p− 1)

)
− p

p− 1
≥ 3

(
1− 1

3(p− 1)

)
− p

p− 1
=

2p− 4

p− 1
≥ 0).

Thus, we conclude that vp(d2i0) > 0, and

vp(di0i) > i

(
1− 1

3(p− 1)

)
− p

p− 1
≥ 0

for each positive integer i > 2. The remainder of assertion (iv) follows immedi-
ately from the inequalities already obtained, together with the inequalities

p

p− 1
> inf

{
1− 1

3(p− 1)
,

1

2 · 3(p− 1)
+

p

2(p− 1)

}
>

1

3(p− 1)
=

p

p− 1
−

(
1 +

2

3(p− 1)

)
≥ vp(ci0)

[cf. Lemma 1.3, (iii)]. This completes the proof of assertion (iv), hence of
Lemma 1.3.
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Definition 1.4. Let K be a mixed characteristic discrete valuation field of
residue characteristic p; c ∈ mK \ {0}. Then we shall write

ϕc : Bc −→ Spec OK [[t]]

— where t denotes an indeterminate — for the blow-up of Spec OK [[t]] with
center given by the closed subscheme defined by the ideal (c, t); bc ∈ Bc for the
generic point of the exceptional irreducible component of the special fiber of Bc

[i.e., the fiber of Bc over the closed point of Spec OK ];

Uc = Spec OK [[t]][sc]/(csc − t) ⊆ Bc

—where sc denotes an indeterminate, but, by a slight abuse of notation, we shall
also use the notation “sc” to denote the element of Γ(Uc,OUc

) determined by the
indeterminate “sc”— for the open subscheme obtained by removing the strict
transform of the special fiber of Spec OK [[t]]. Note that it follows immediately
from the various definitions involved that ϕc induces a morphism

ϕ̂c : Ûc
def
= Spec OK [[sc]] −→ Spec OK [[t]]

over OK that maps t to csc.

Proposition 1.5 (Local construction of Artin-Schreier extensions in
the special fiber I). We maintain the notation of Definition 1.4. Suppose
that K contains a primitive p-th root of unity ζp ∈ K. Write k for the residue

field of K; π
def
= 1− ζp ∈ K;

f : Spec OK [[t]] −→ Spec OK [[t]]

for the [manifestly] finite flat morphism over OK corresponding to the homo-
morphism of topological OK-algebras that maps t 7→ (1+t)p−1. Then f induces
a finite morphism

f̃ : Bπ −→ Bπp

over OK that maps bπ 7→ bπp and induces a finite flat morphism Uπ → Uπp ,
whose induced morphism on special fibers is the morphism induced on spectra
by the injective homomorphism

k[sπp ] −→ k[sπ]

over k that maps sπp 7→ spπ − sπ.

Proof. First, observe that we have an inclusion of ideals in OK [[t]]

(πp, (1 + t)p − 1) ⊆ (π, t).

This observation, together with Lemma 1.1, implies, by the definition of the
blow-up, that the morphism f functorially induces a [proper and quasi-finite,
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hence] finite morphism f̃ : Bπ → Bπp over OK , which, in turn, induces a
[manifestly] finite flat morphism

Uπ −→ Uπp

over OK such that

t 7→ (1 + t)p − 1, sπp 7→ π−p
(
(1 + πsπ)

p − 1
)

[cf. Lemma 1.1]. Indeed, it follows from Lemma 1.1 that this morphism Uπ →
Uπp determines a dominant morphism

Spec k[sπ] −→ Spec k[sπp ]

[between open subschemes of the respective exceptional irreducible components
of the special fibers of Bπ, Bπp ] that corresponds to the injective homomorphism

k[sπp ] −→ k[sπ]

over k that maps sπp 7→ spπ − sπ. This completes the proof of Proposition
1.5.

Remark 1.5.1. In the notation of Proposition 1.5, write Gm = Spec OK [u, 1
u ] for

the multiplicative group scheme over OK , where u denotes an indeterminate;

ι : Spec OK [[t]] −→ Gm

for the morphism that corresponds to the homomorphism over OK that maps
u 7→ 1 + t. Then we have a commutative diagram

Uπ −−−−→
ϕπ|Uπ

Spec OK [[t]] −−−−→
ι

Gm

f̃ |Uπ

y f

y p

y
Uπp −−−−−→

ϕπp |Uπp

Spec OK [[t]] −−−−→
ι

Gm,

where the right-hand vertical arrow denotes the p-th power morphism; the verti-
cal arrows are finite flat morphisms of degree p [cf. Proposition 1.5]; the second
square is cartesian; the first square is cartesian, up to taking the normalization
of the fiber product that would make the first square “truly cartesian”.

Proposition 1.6 (Local construction of Artin-Schreier extensions in
the special fiber II). We maintain the notation of Remark 1.5.1. Let

g(t) = 1 +
∑
i≥1

ait
i ∈ OK [[t]] \ {1}.

Write i0 for the smallest positive integer i such that ai ̸= 0;

λg : Spec OK [[t]] −→ Spec OK [[t]]

for the morphism over OK corresponding to the homomorphism of topological
OK-algebras that maps t 7→ g(t)− 1. Then the following hold:
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(i) After possibly replacing K by a suitable finite field extension of K, there
exist a nonnegative integer µ, elements c1, c2 ∈ mK \{0}, an isomorphism

λh : Spec OK [[sc1 ]]
∼→ Spec OK [[sc1 ]]

over OK , and a morphism

ξg : Spec OK [[sc1 ]] −→ Gm

over OK satisfying the following conditions:

• Write 0c1 for the OK-valued point of Spec OK [[sc1 ]] obtained by map-
ping sc1 7→ 0. Then λh maps 0c1 7→ 0c1 , and ξg maps 0c1 to the
identity element of Gm(OK).

• There exists a commutative diagram

Spec OK [[sc1 ]] −−−−→
ϕ̂c1

Spec OK [[t]] −−−−→
λg

Spec OK [[t]]

λh

x≀ ι

y
Spec OK [[sc1 ]] −−−−→

ξg
Gm −−−−→

pµ
Gm,

where the right-hand lower horizontal arrow denotes the pµ-th power
morphism.

• Write
τ : Spec OK [[t]]

∼→ Spec OK [[sc1 ]]

for the isomorphism over OK corresponding to the isomorphism of
topological OK-algebras that maps sc1 7→ t;

η(sc2) ∈ OK [[sc2 ]]

for the image of u via the homomorphism OK [u, 1
u ] → OK [[sc2 ]] in-

duced by the composite

Spec OK [[sc2 ]] −→
ϕ̂c2

Spec OK [[t]]
∼−→
τ

Spec OK [[sc1 ]] −→
ξg

Gm.

Then it holds that η(sc2)− 1 ∈ mK [[c2sc2 ]], and, moreover,

π−p(η(sc2)− 1)− si0c2 ∈ mK [sc2 ] +mK [[c2sc2 ]] = mK [sc2 ] +mK [[t]].

In particular, there exists a morphism

θg : Uc2 −→ Uπp

over OK that fits into the following commutative diagram

Uc2 −−−−−→
ϕc2

|Uc2

Spec OK [[t]]
∼−−−−→
τ

Spec OK [[sc1 ]]

θg

y ξg

y
Uπp −−−−−→

ϕπp |Uπp

Spec OK [[t]] −−−−→
ι

Gm.
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(ii) Fix a collection of data (µ, c1, c2, λh, ξg) as in (i). Write

Y
def
= Uc2 ×Uπp Uπ

for the fiber product determined by the morphism θg : Uc2 → Uπp and the

morphism Uπ → Uπp induced by f̃ [cf. Proposition 1.5]. Then the natural
morphism

Ys −→ (Uc2)s = Spec k[sc2 ]

induced by the first projection morphism Y → Uc2 corresponds to the nat-
ural injective homomorphism

k[sc2 ] ↪→ k[sc2 , y]/(y
p − y − si0c2)

over k, where y denotes an indeterminate.

Proof. First, we consider assertion (i). We begin by applying Lemma 1.3, (ii),
where we take “g(s)” to be g(t) [i.e., so the indeterminate “s” corresponds to
t], and we observe that, by replacing K by a suitable finite extension of K, we
may assume without loss of generality that there exists an “x” as in Lemma 1.3,
(ii). This yields an isomorphism “h : OK [[s]]

∼→ OK [[s]]” as in Lemma 1.3, (ii),
whose induced morphism on spectra — where we interpret the indeterminate
“s” to be sc1 , and we take “xj” to be c1 [so “xjs” corresponds to c1sc1 = t]
— we take to be λh. Here, we recall that this isomorphism “h” of Lemma 1.3,
(ii), satisfies a condition “h(g(xjs)) = 1 + bsi0”. Next, we would like to apply
Lemma 1.3, (iii), where we take “1 + ai0s

i0” to be the “1 + bsi0” of Lemma
1.3, (ii) [i.e., so the indeterminate “s” still corresponds to sc1 ]. This yields a

power series “g(s)
1

pµ ” as in Lemma 1.3, (iii). We then take the “µ” of Lemma
1.3, (iii), to be µ and define ξg to be the morphism over OK corresponding

to the homomorphism that maps u to this power series “g(s)
1

pµ ” [i.e., where
the indeterminate “s” still corresponds to sc1 ]. This yields a collection of data
(µ, c1, λh, ξg) that satisfies the first two itemized conditions of Proposition 1.6,
(i). The third [and final] itemized condition of Proposition 1.6, (i), now follows
by translating the various estimates of Lemma 1.3, (iv), into the notation of the
present situation, where we take the “c” of Lemma 1.3, (iv), to be c2, and we
observe that, again by replacing K by a suitable finite extension of K, we may
assume without loss of generality that there exist “ζp” and “c” as in Lemma

1.3, (iv). Also, we observe that the power series “g(cs)
1

pµ ” of Lemma 1.3, (iv),
corresponds to η(sc2) [i.e., where the indeterminate “s” corresponds to sc2 ].
This completes the proof of assertion (i).

Next, we verify assertion (ii). Recall that

• the morphism θg : Uc2 → Uπp corresponds to the homomorphism of topo-
logical OK-algebras

OK [[t]][sπp ]/(πpsπp − t) −→ OK [[t]][sc2 ]/(c2sc2 − t)

that maps
sπp 7→ π−p(η(sc2)− 1), t 7→ η(sc2)− 1,
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while

• the morphism Uπ → Uπp corresponds to the homomorphism of topological
OK-algebras

OK [[t]][sπp ]/(πpsπp − t) −→ OK [[t]][sπ]/(πsπ − t)

that maps

sπp 7→ π−p((1 + πsπ)
p − 1), t 7→ (1 + t)p − 1.

Then since
π−p((1 + πsπ)

p − 1)− (spπ − sπ) ∈ mK [[sπ]]

and
π−p(η(sc2)− 1)− si0c2 ∈ mK [sc2 ] +mK [[t]]

[cf. Lemma 1.1; Proposition 1.6, (i)], it holds that

• the morphism (Uc2)s → (Uπp)s corresponds to the homomorphism

k[sπp ] −→ k[sc2 ]

over k that maps sπp 7→ si0c2 , while

• the morphism (Uπ)s → (Uπp)s corresponds to the homomorphism

k[sπp ] −→ k[sπ]

over k that maps sπp 7→ spπ − sπ.

Thus, we conclude that the first projection morphism

Ys = (Uc2)s ×(Uπp )s (Uπ)s → (Uc2)s = Spec k[sc2 ]

corresponds to the natural injective homomorphism

k[sc2 ] ↪→ k[sc2 , y]/(y
p − y − si0c2)

over k. This completes the proof of assertion (ii), hence of Proposition 1.6.

Remark 1.6.1. In the notation of Proposition 1.6, we observe that the first
projection morphism Y → Uc2 fits into a commutative diagram

Y −−−−→
θY

Uπ −−−−→
ϕπ|Uπ

Spec OK [[t]] −−−−→
ι

Gm

fY

y f̃ |Uπ

y f

y p

y
Uc2 −−−−→

θg
Uπp −−−−−→

ϕπp |Uπp

Spec OK [[t]] −−−−→
ι

Gm,
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where the first vertical arrow fY denotes the first projection morphism Y → Uc2 ;
the left-hand upper horizontal arrow θY denotes the second projection morphism
Y → Uπ; the vertical arrows are finite flat morphisms of degree p [cf. Proposition
1.5, Remark 1.5.1]; the first and third squares are cartesian; the second square is
cartesian, up to taking the normalization of the fiber product that would make
the second square “truly cartesian”.

Remark 1.6.2. Let k be a field of characteristic p; n a positive integer. Write C
for the Artin-Schreier curve over k defined by the equation yp − y = xn, where
x and y are indeterminates; gC for the genus of C. Then it follows immediately
from Hurwitz’s formula that

gC =
(n′ − 1)(p− 1)

2
,

where n′ denotes the greatest positive integer that divides n and is prime to p.
In particular, if n is not a power of p, then gC ≥ 1. [Indeed, by considering
the Frobenius morphism, one reduces immediately to the case where n = n′.
Moreover, the computation of gC is immediate when n = 1 in light of the
form of the equation yp − y = x. Thus, the computation of gC reduces to the
computation of the genus of a tamely ramified cyclic covering of the projective
line of degree n whose ramification consists solely of p+1 totally ramified points.]

2 Resolution of nonsingularities for arbitrary hy-
perbolic curves over p-adic local fields

Let p be a prime number. In the present section, we apply certain con-
structions involving p-divisible groups to extend the Artin-Schreier coverings
constructed locally in §1 to coverings of an arbitrary hyperbolic curve. As a
consequence, we prove that arbitrary hyperbolic curves over p-adic local fields
satisfy RNS, i.e., “resolution of nonsingularities” [cf. Definition 2.2, (vii); The-
orem 2.17]. This result may be regarded as a generalization of results obtained
by A. Tamagawa and E. Lepage [cf. [Tama2], Theorem 0.2; [Lpg1], Theorem
2.7]. Historically [cf., e.g., the discussion in the Introduction to [Tama2]], the
roots of these results of Tamagawa and Lepage may be traced back to the tech-
nique of “passing to a covering with singular reduction of a given curve with
smooth reduction over a p-adic local field” applied in the proof of [PrfGC], The-
orem 9.2 [cf. also Proposition 2.3, (xii), below]. Moreover, the techniques of
[AbsTopII], §2, may be regarded as a sort of weak, pro-p version of Tamagawa’s
RNS [cf. [AbsTopII], Remark 2.6.1]. In fact, the approach of the present sec-
tion may be regarded as a sort of amalgamation of the techniques of [Lpg1]
with the techniques of [AbsTopII], §2. At any rate, from a historical point of
view, it is interesting to observe how various RNS results have been motivated

25



by and indeed are deeply intertwined with various results in anabelian geometry
[cf. Corollary 2.5, as well as Theorems 3.12, 3.13 in §3 below].

First, we begin by fixing our conventions concerning models of hyperbolic
curves [cf. [DM], Definition 1.1; [Knud], Definition 1.1].

Definition 2.1. Let K be a valuation field; X a hyperbolic curve over K; X a
scheme over OK . Then:

(i) We shall say that X is a compactified model of X over OK if X is a proper,
flat, normal scheme of finite presentation over OK whose generic fiber is
the [uniquely determined, up to unique isomorphism] smooth compactifi-
cation of X over K.

(ii) Suppose that the cusps of X are K-rational. Then we shall say that X
is a compactified semistable model of X over OK if X is a compactified
model of X over OK such that the following conditions hold:

• the geometric special fiber of X is a semistable curve [i.e., a reduced,
connected curve each of whose nonsmooth points is an ordinary dou-
ble point];

• the images of the sections Spec OK → X determined by the cusps of
X [which we shall refer to as cusps of X ] lie in the smooth locus of
X and do not intersect each other.

Suppose that X is a compactified semistable model of X over OK . Then
we shall say that X has split reduction if Xs is split [i.e., each of the
irreducible components and nodes of Xs is geometrically irreducible].

(iii) Suppose that X is a compactified semistable model of X over OK that has
split reduction. Let L be a finite extension of K equipped with a valuation
that extends the valuation on K; X ∗ a compactified semistable model of
XL over OL such that X ∗ has split reduction and dominates X . Then we
shall say that X ∗ is a toral compactified semistable model relative to X if
each irreducible component of X ∗

s that maps to a closed point of Xs [via
the uniquely determined morphism X ∗ → X ] is normal of genus 0 and
has precisely 2 nodes. Suppose that X ∗ is a toral compactified semistable
model relative to X . Let v be a vertex of the dual graph associated to X ∗

s .
Then we shall say that v is a toral semistable vertex of X ∗ if v corresponds
to an irreducible component of X ∗

s that maps to a closed point of X .

(iv) We shall say that X is a compactified stable model of X over OK if X is a
compactified semistable model of X over OK such that X , together with
the cusps of X , determines a pointed stable curve.

(v) We shall say that X is a semistable model of X over OK if X is obtained
by removing the cusps from a [uniquely determined, by Zariski’s Main
Theorem, up to unique isomorphism] compactified semistable model of X
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over OK . Suppose that X is a semistable model of X over OK . Then we
shall say that X has split reduction if Xs is split [i.e., each of the irreducible
components and nodes of Xs is geometrically irreducible].

(vi) We shall say that X is a stable model of X over OK if X is obtained
by removing the cusps from a [uniquely determined, by Zariski’s Main
Theorem, up to unique isomorphism] compactified stable model of X over
OK .

(vii) We shall say thatX has stable reduction overK if there exists a [necessarily
unique, up to unique isomorphism] stable model of X over OK . Suppose
that X is a stable model of X over OK . Then we shall say that X has
split stable reduction over K if Xs is split [i.e., each of the irreducible
components and nodes of Xs is geometrically irreducible].

Remark 2.1.1. It follows from elementary commutative algebra/scheme theory
[cf. [EGAIV2], Corollaire 6.1.2; [EGAIV3], Proposition 12.1.1.5] that any com-
pactified model as in Definition 2.1, (i), is of dimension 2 whenever K is a
complete discrete valuation field.

Remark 2.1.2. In the notation of Definition 2.1, suppose that X is a proper
hyperbolic curve over K. Then it follows immediately from the various defini-
tions involved that the notion of a compactified semistable model of X over OK

coincides with the notion of a semistable model of X over OK .

Remark 2.1.3. In the notation of Definition 2.1, suppose that K is a complete
discrete valuation field, and that X has split stable reduction over K. Let X
be a compactified semistable model of X over OK that has split reduction;
ϕ : Y → X a morphism of compactified semistable models over OK that re-
stricts to a connected finite étale covering Y → X over K. Then one verifies
immediately — by considering the map induced on irreducible components of
the respective special fibers by the necessarily finite, hence surjective morphism
[induced by Y → X ] between the [two-dimensional, normal, integral] spectra of
the completions of the local rings of X , Y at the closed points under consider-
ation — that ϕ always maps a smooth closed point of Y that is isolated in the
fiber of ϕ to a smooth closed point of X .

Remark 2.1.4. In the notation of Remark 2.1.3, let X ∗ be a toral compactified
semistable model relative to X ; e an edge of the dual graph associated to Xs; b
a branch of the node e; v a toral semistable vertex of X ∗ that maps to [i.e., for
which the corresponding irreducible component maps to the node corresponding
to] e. Recall that the completion Ôe of the local ring of X at e is isomorphic to
OK [[x, y]]/(xy−a), where a ∈ mK \{0}, and x, y denote indeterminates chosen
so that the ideal (x) (⊆ OK [[x, y]]/(xy − a)) corresponds to b. Observe that
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this ideal (x) is independent of the choice of x, y [cf. [Hur], §3.7, Lemma]. In
particular, we obtain a homomorphism of local rings

ψ : OK [[x, y]]/(xy − a) −→ Ôv

where Ôv denotes the completion of the local ring of X ∗ at the generic point
of the irreducible component of X ∗ corresponding to v. Write ordv(−) for the

normalized valuation associated to Ôv whose normalization is determined by
the condition that ordv(p) = 1 ∈ R. Thus, we obtain a rational number

0 < ρb,v
def
=

ordv(ψ(x))

ordv(ψ(a))
< 1

associated to b and v, which is in fact independent of the normalization of
“ordv(−)”. If, moreover, we write b′ for the other branch of e, then one verifies
immediately that ρb,v + ρb′,v = 1. Finally, we observe that

given any rational number ρ such that 0 < ρ < 1, there exist, after
possibly replacing K by a suitable finite extension field of K, an X ∗

and v as above such that ρb,v = ρ.

Indeed, it follows immediately from the theory of pointed stable curves, as ex-
posed in [Knud], that, by possibly replacing K by a suitable finite extension
field of K and X by a suitable dense open subscheme of X, we may assume
that X is the [unique, up to unique isomorphism] compactified stable model of
X over OK , and that ρ may be written as a fraction whose denominator divides
the positive integer vp(a) · vp(πK)−1, where πK is a uniformizer of OK . Then
it follows again from the theory of pointed stable curves, as exposed in [Knud],
that, if we take

• X ∗ to be the [unique, up to unique isomorphism] compactified stable model
over OK of the hyperbolic curve obtained by removing from X a suitable
K-rational point of X with center at e [cf. the construction of the displayed

homomorphism “(ÔX †,x
∼→) OK [[s, t]]/(st−πr

K)→ OK” in the portion of
the proof of Proposition 2.3, (iii), below, concerning the case where “x is
a nonsmooth closed point of X †”] and

• v to be the unique irreducible component of X ∗
s that maps to a closed point

of Xs via the natural morphism X ∗ → X [cf. the morphism “X †[x]→ X †”
in the portion of the proof of Proposition 2.3, (iii), below, concerning the
case where “x is a nonsmooth closed point of X †”],

then ρb,v = ρ, as desired.

Remark 2.1.5. In the notation of Remark 2.1.4, we observe that, for a fixed
choice of b,
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the assignment
v 7→ ρb,v ∈ Q

that assigns to a toral semistable vertex v of X ∗ that maps to e the
rational number ρb,v is injective.

Indeed, it follows immediately from the theory of pointed stable curves, as ex-
posed in [Knud] — i.e., by adding finitely many suitably positioned cusps and
then considering the various contraction morphisms that arise from eliminating
cusps — that, to verify the asserted injectivity, it suffices to show that if v and
w are the unique toral semistable vertices of X ∗ that map to e, which implies
that there exists an edge e∗ of the dual graph associated to X ∗

s that abuts to v
and w, then ρb,v ̸= ρb,w. To this end, we recall that X and X ∗ admit natural
log structures [determined by the respective multiplicative monoids of regular
functions invertible outside the respective special fibers Xs, X ∗

s ] such that the
morphism X ∗ → X extends uniquely to a morphism of log schemes [cf., e.g., the
subsection in Notations and Conventions entitled “Log schemes”; the discussion
of [Hur], §3.7, §3.8, §3.10]. Moreover, the completion Ôe∗ of the local ring of
X ∗ at e∗ is isomorphic to OK [[x∗, y∗]]/(x∗y∗ − a∗), where a∗ ∈ OK , and x∗,
y∗ denote indeterminates which may be chosen in such a way that the homo-
morphism of topological OK-algebras Ôe → Ôe∗ induced by X ∗ → X maps
x 7→ (x∗)N · (π∗)M · u, for some unit u ∈ Ô×

e∗ , some uniformizer π∗ ∈ OK , some
positive integer N , and some nonnegative integer M . [Indeed, the fact that
N is necessarily positive follows immediately, in light of our assumptions on v
and w, from well-known considerations in intersection theory on the Q-factorial
normal schemes X ∗ and X .] Then the desired inequality ρb,v ̸= ρb,w follows
immediately from the fact that, up to a possible permutation of the labels “v”
and “w”, it holds that x∗ is invertible at the generic point of [the irreducible
component corresponding to] v, but non-invertible at the generic point of [the
irreducible component corresponding to] w.

Remark 2.1.6. In the notation of Remark 2.1.3, suppose further that Y has
split reduction, and that the morphism Y → X is an isomorphism. Let X ∗ be
a toral compactified semistable model relative to X , Y → X ∗ a morphism over
X . Then observe that it follows immediately from Remark 2.1.3, together with
Zariski’s Main Theorem, that each normal irreducible component of Ys that

• maps to a closed point of Xs,

• is of genus 0, and

• has precisely 1 node

maps to a closed point of X ∗
s . In particular, it follows immediately from an

iterated application of the above observation, together with the theory of pointed
stable curves, as exposed in [Knud] — i.e., by adding finitely many suitably
positioned cusps and then considering the various contraction morphisms that
arise from eliminating cusps — that
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there exists a unique, up to unique isomorphism, toral compactified
semistable model Y∗ relative to X , together with a uniquely deter-
mined morphism Y → Y∗ of compactified semistable models over
X , such that the following universal property is satisfied: if X † is
a toral compactified semistable model relative to X such that the
morphism Y → X admits a factorization Y → X † → X , then the
morphism Y → X † admits a unique factorization Y → Y∗ → X †.

That is to say, Y∗ may be thought of as a sort of “universal toralization [over
X ]” of Y. In particular, it follows immediately from the existence of universal
toralizations, together with the theory of pointed stable curves, as exposed in
[Knud] — i.e., by adding finitely many suitably positioned cusps and then con-
sidering the various contraction morphisms that arise from eliminating cusps
— that the toral compactified semistable models relative to X form a directed
inverse system.

Definition 2.2. Let Σ ⊆ Primes be a nonempty subset; K a mixed character-
istic complete discrete valuation field of residue characteristic p; X a hyperbolic
curve over K. Write Ω for the p-adic completion of [some fixed] K. Then:

(i) Let v be a valuation on a field F that contains K. Write Ov for the ring of
integers determined by v; mv ⊆ Ov for the maximal ideal of Ov. Then we
shall say that v is a p-valuation [over K] if OK = Ov ∩K [which implies
that p ∈ mv]. Here, the phrase “over K” will be omitted in situations
where the base field K is fixed throughout the discussion. We shall say
that v is primitive if it is a p-valuation such that the only prime ideal of
Ov that contains p is mv. We shall say that v is residue-transcendental

if it is a p-valuation whose residue field kv
def
= Ov/mv is a transcendental

extension of the residue field of K.

(ii) In the situation of (i), suppose that v is a p-valuation, that X̃ is a universal
geometrically pro-Σ covering of X, and that F is a subfield [in a fashion

compatible with the given inclusion K ↪→ F ] of the function field K(X̃Ω)

of X̃Ω. Then we shall say that v is point-theoretic if it arises from some
point x̃ ∈ X̃(Ω), i.e., if Ov ⊆ F is equal to the subring of F consisting

of elements ∈ F that determine rational functions on X̃Ω that are regular
at x̃, and whose value at x̃ is contained in OΩ ⊆ Ω. Thus, every point
x̃ ∈ X̃(Ω) determines a corresponding point-theoretic valuation of F .

(iii) In the situation of (ii), let Z → X be a connected finite étale covering

equipped with a factorization X̃ → Z → X. Let Z be a compactified
semistable model of Z with split reduction. Then we shall write

VE(Z)

for the finite set [equipped with the discrete topology] of vertices and
edges of the dual graph associated to Zs. Note that there is a notion of
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specialization/generization among elements of VE(Z), i.e., we shall say
that

• a vertex specializes to a node, or, alternatively, that a node generizes
to a vertex, if the node abuts to the vertex;

• a vertex specializes/generizes to a vertex if the two vertices coincide;

• an edge specializes/generizes to an edge if the two edges coincide.

For c1, c2 ∈ VE(Z), if c1 specializes to c2, or, equivalently, c2 generizes to
c1, then we shall write c1 ⇝ c2. By allowing Z and Z to vary, we thus
obtain a topological space

VE(X̃)
def
= lim←−

Z
VE(Z),

where the transition maps in the inverse limit are induced by the corre-
sponding scheme-theoretic morphisms of compactified semistable models
[which form a directed inverse system — cf. Proposition 2.3, (iii), below],
that is to say, by mapping a vertex [i.e., irreducible component] or edge
[i.e., node] to the smallest vertex [i.e., irreducible component] or edge [i.e.,
node] that contains its scheme-theoretic image. [Here, we recall that any
such morphism of compactified semistable models always maps a smooth
closed point that is isolated in the fiber of the morphism to a smooth closed
point — cf. Remark 2.1.3.] We shall refer to an element of VE(X̃) as a VE-

chain of X̃. Note that the notion of specialization/generization among el-
ements of each VE(Z) determines [i.e., by considering each constituent set
in the above inverse limit] a notion of specialization/generization among

elements of VE(X̃). We shall say that an element c ∈ VE(X̃) is primitive
if every generization of c is equal to c.

(iv) In the situation of (iii), let zc1 , zc2 ∈ VE(Z). Then we shall write

δ(zc1 , zc2) ∈ Z

for the integer δ such that the set of vertices contained in a path of minimal
length between zc1 and zc2 on the dual graph of Zs is of cardinality δ+1.

Let c1, c2 ∈ VE(X̃). Then we shall write

δ(c1, c2)
def
= sup

Z
δ(wc1 , wc2) ∈ Z ∪ {+∞},

where Z ranges over the set of compactified semistable models with split
reduction of connected finite étale coverings Z → X equipped with a
factorization X̃ → Z → X; wci ∈ VE(Z) denotes the element determined
by ci for each i = 1, 2.

(v) In the situation of (ii), suppose further that F contains the function field

K(X̃) of X̃. Then observe that v determines, by considering the centers
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associated to v on the various “Z” in the discussion of (iii), an element

∈ VE(X̃), which we shall refer to as the center-chain associated to v.

In particular, any point x̃ ∈ X̃(Ω) determines, by considering the point-

theoretic valuation associated to x̃, an element ∈ VE(X̃), which we shall
refer to as the [point-theoretic] center-chain associated to x̃. Write x ∈
X(Ω) for the image of x̃ in X(Ω). Thus, the Gal(X̃/XK)-orbit of x̃ is

completely determined by x. We shall refer to the Gal(X̃/XK)-orbit of
the center-chain associated to x̃ as the [point-theoretic] orbit-center-chain
associated to x [cf. the discussion of Remark 2.2.4 below].

(vi) In the situation of (ii), let Z → X be a connected finite étale covering

equipped with a factorization X̃ → Z → X. Let Z be a compactified
semistable model with split reduction of Z. In the remainder of the dis-
cussion of the present item (vi), all toral compactified semistable models
relative to Z will be assumed to have generic fibers that are equipped
with the structure of a subcovering of the pro-covering X̃ → Z. Write
V(Z) (respectively, E(Z)) for the set of vertices (respectively, edges) of
Zs. Thus, VE(Z) = V(Z)

⨿
E(Z). For each c ∈ VE(Z), write

Vc

for the set of equivalence classes of the set of vertices of toral compactified
semistable models relative to Z that map to the closed subscheme of Zs

corresponding to c, where we apply the equivalence relation induced by
the dominant morphisms over Z of toral compactified semistable models
relative to Z. Let e ∈ E(Z). Then we shall write

Ve

for the union of Ve and the vertices of V(Z) that abut to e. Observe
that, for each toral compactified semistable model Z† relative to Z and
each c† ∈ VE(Z†) that maps to the closed subscheme of Zs corresponding
to c, the set Vc† may be regarded, in a natural way [i.e., by considering
the maps induced by dominant morphisms over Z of toral compactified
semistable models relative to Z], as a subset of Vc. We shall refer to such
a subset Vc† ⊆ Vc as a basic open subset of Vc. Thus, from the point of
view of the natural bijection, determined by selecting a branch b of the
edge e, between Ve and the set of rational numbers ρ such that 0 < ρ < 1
[cf. Remarks 2.1.4, 2.1.5, 2.1.6], the basic open subsets ⊆ Ve correspond
precisely to the open intervals with rational endpoints of Ve. In particular,
it is natural to regard Vc as being equipped with the topology determined
by the open basis consisting of the basic open subsets ⊆ Vc. We shall
refer to as a quasi-basic open subset of Ve any open subset of Ve which
is a union of a countable collection of basic open subsets ⊆ Ve for which
the relation of inclusion determines a total ordering. We shall refer to as
a Dedekind cut of Ve an unordered pair {D1, D2} of disjoint nonempty
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quasi-basic open subsets D1, D2 ⊆ Ve such that Ve = D1 ∪ D2. Write
De for the set of Dedekind cuts of Ve. Note that the topology of the Vw,
where w ∈ Ve \ Ve, induces, in a natural way, a topology on the set

T e
def
= Ve

⨿
De

[i.e., by taking as an open basis for the topology for T e the subsets of T e

obtained as the intersections with T e of unions of an open subset U ⊆ Vw,
where w ∈ Ve \Ve, with the set of Dedekind cuts {D1, D2} ∈ De such that
both D1 and D2 intersect U ]. Thus,

Te
def
= Ve

⨿
De.

[with the induced topology] is homeomorphic to the open interval (0, 1) ⊆
R of the real line [cf. Remarks 2.1.4, 2.1.5, 2.1.6]. Write

VE(Z)tor def
= V(Z) ∪

{ ∪
e∈E(Z)

T e

}
.

Thus, the discrete topology on V(Z), together with the topologies defined
above on the T e, determine a topology on VE(Z)tor. Moreover, there exists
a noncontinuous [cf. Remark 2.2.1 below] natural surjective map

ϵZ : VE(Z)tor −→ VE(Z)

that maps each Te to e. Finally, by allowing Z and Z to vary, we thus
obtain a topological space

VE(X̃)tor
def
= lim←−

Z
VE(Z)tor

[cf. the discussion of (iii)], together with a natural [not necessarily surjec-
tive — cf. Proposition 2.3, (viii), below!] map

ϵX̃ : VE(X̃)tor −→ VE(X̃).

(vii) We shall say that X satisfies Σ-RNS [i.e., “Σ-resolution of nonsingulari-
ties” — cf. [Lpg1], Definition 2.1] if the following condition holds:

Let v be a discrete residue-transcendental p-valuation on the
function field K(X) of X. Then there exists a connected geo-
metrically pro-Σ finite étale Galois covering Y → X such that
Y has stable reduction [over its base field], and v coincides with
the restriction [to K(X)] of a discrete valuation on the function
field K(Y ) of Y that arises from an irreducible component of
the special fiber of the stable model of Y .
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Remark 2.2.1. In the notation of Definition 2.2, (vi), the natural surjective map
ϵZ is not continuous in general. Indeed, to see this, it suffices to observe that the
inverse image of the closed subset consisting of a single edge is an open subset
of VEtor(Z) that is not closed. Finally, we observe that one may also conclude
from this noncontinuity of ϵZ that ϵX̃ is not continuous.

Remark 2.2.2. In the notation of Definition 2.2, (vii), suppose that Σ \ {p} is
nonempty, and that X satisfies Σ-RNS. Then, by considering a suitable admis-
sible covering of the stable model of “Y ” as in Definition 2.2, (vii), one verifies
immediately that one may assume that the normalization of the irreducible
component that appears in Definition 2.2, (vii), is of genus ≥ 2.

Remark 2.2.3. In the notation of Definition 2.2, (vii), we make the following
observations.

(i) Let L ⊆ Ω be a topological subfield containing K that arises as the [topo-
logical] field of fractions of a mixed characteristic complete discrete valu-
ation ring of residue characteristic p. Then let us observe that

any compactified semistable model of XL over OL arises, after
possibly replacing K and L, respectively, by suitable finite ex-
tension fields of K and L, as the result of base-changing, from
OK to OL, some compactified semistable model of XK over OK .

Indeed, since every element of L admits arbitrarily close p-adic approxi-
mations by elements of finite extension fields of K contained in K, this
observation follows immediately by noting that it follows immediately from
the well-known theory of pointed stable curves, as exposed in [Knud], that,
after possibly replacing K and L, respectively, by suitable finite extension
fields of K and L and possibly replacing X by some dense open subscheme
ofX, we may assume without loss of generality that the given compactified
semistable model of XL over OL is in fact the [unique, up to unique iso-
morphism] compactified stable model of XL, i.e., which necessarily arises
as the result of base-changing, from OK to OL, the [unique, up to unique
isomorphism] compactified stable model of XK over OK .

(ii) We maintain the notation of (i). Then let us observe that

X satisfies Σ-RNS if and only if XL satisfies Σ-RNS.

Indeed, this observation follows immediately, in light of the observation of
(i), from Proposition 2.3, (ii), (iii), below; Proposition 2.4, (iv), below [cf.
also Definition 2.2, (vii), as well as the discussion of the final portion of the
subsection in Notations and Conventions entitled “Fundamental groups”].

(iii) Next, let L be a mixed characteristic complete discrete valuation field of
residue characteristic p that contains K as a topological subfield. Then
observe that it follows immediately from the well-known elementary theory
of complete discrete valuation fields that
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L is isomorphic, as a topological K-algebra, to a field “L” of
the sort discussed in (i), (ii) if and only if [the valuation on] L is
not residue-transcendental [relative to K], i.e., if and only if the
residue field of L is an algebraic extension of the residue field of
K.

(iv) We maintain the notation of (iii). Then let us observe that

if XL satisfies Σ-RNS, then the residue field of L is an algebraic
extension of the residue field of K.

Indeed, it suffices to verify this observation after replacing K by a finite
extension field of K. In particular, we may assume without loss of gener-
ality [cf. Proposition 2.3, (iii)] that there exists a compactified semistable
model X of X over OK , and that the residue field of L is a non-algebraic
extension of the residue field of K. Then it follows immediately from
the uniqueness, up to unique isomorphism, of compactified stable models
[cf. also Definition 2.2, (vii), as well as the discussion of the final portion
of the subsection in Notations and Conventions entitled “Fundamental
groups”; the stable reduction theorem of [DM], [Knud]], that if XL satis-
fies Σ-RNS, then any closed point of (X ⊗OK

OL)s that arises as the center
of a discrete residue-transcendental p-valuation on the function field of XL

is necessarily defined over some algebraic extension of the residue field of
K. On the other hand, this contradicts the existence of discrete residue-
transcendental p-valuations on the function field of XL that arise as the
local rings of generic points of exceptional divisors of blow-ups of smooth
closed points of (X ⊗OK

OL)s that are not defined over some algebraic
extension of the residue field of K. This completes the proof of the above
observation.

(v) We maintain the notation of (iii). Then we observe further that, under
the assumption that X satisfies Σ-RNS, it holds that

the residue field of L is an algebraic extension of the residue field
of K if and only if XL satisfies Σ-RNS.

Indeed, necessity follows formally from the observations of (ii), (iii), while
sufficiency follows formally from the observation of (iv).

Remark 2.2.4. In the context of Definition 2.2, we recall from the general theory
of valuations the following well-known basic facts. Let L be a field equipped
with a valuation v, M a finite normal extension field of L. Write Ov for the ring
of integers of L with respect to v, mv ⊆ Ov for the maximal ideal of Ov, OM

for the integral closure of Ov in M , vM/L for the set of valuations on M that
extend v, and Aut(M/L) for the group of automorphisms of M that restrict to
the identity on L. If w ∈ vM/L, then we shall write Ow for the ring of integers of

M with respect to w, mw ⊆ Ow for the maximal ideal of Ow, pw
def
= OM ∩ mw.
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Then the set vM/L is nonempty [cf. [EP], Theorem 3.1.1], and the natural action
of Aut(M/L) on vM/L is transitive [cf. [EP], Theorem 3.2.14]. Moreover,

OM =
∩

w∈vM/L

Ow

[cf. [EP], Theorem 3.1.3, (2)]; the assignment vM/L ∋ w 7→ pw determines a
bijective correspondence between vM/L and the set of prime ideals of OM that
lie over mv, and, for w ∈ vM/L, Ow = (OM )pw

[cf. [EP], Theorem 3.1.1; [EP],
Theorem 3.2.13]. In this situation, if we assume further that v is real, and
that L is complete with respect to v, then vM/L is of cardinality 1 [cf. [Neu],
Chapter II, Theorem 4.8]. [Here, we recall that if v is not real, then Ov does
not, in general, satisfy Hensel’s Lemma, i.e., even if L is complete with respect
to v [cf. [EP], Remark 2.4.6].] More generally, if v is real, then L admits a

natural completion L̂ [cf. [EP], Theorem 1.1.4], which is a henselian field [cf.
[Neu], Chapter II, Theorem 4.8; the discussion preceding [EP], Lemma 4.1.1]
and contains, up to natural isomorphism, the henselization Lh of L [cf. [EP],
the discussion preceding Theorem 5.2.2] as a subfield, i.e.,

Lh ⊆ L̂

[cf. [EP], Corollary 4.1.5; [EP], Corollary 5.2.3; the discussion of Case 2 in the
proof of [EP], Theorem 6.3.1].

The various basic properties stated in the following Proposition 2.3 consist
of elementary results that are essentially well-known or implicit in the literature
[cf. Remarks 2.3.2, 2.3.3 below], but we give [essentially] self-contained state-
ments and proofs here in the language of the present discussion for the sake of
completeness.

Proposition 2.3 (Basic properties of models of hyperbolic curves). Let
K be a mixed characteristic complete discrete valuation field of residue charac-
teristic p; X a hyperbolic curve over K. Write K(X) for the function field of
X. Then the following hold:

(i) Let R ⊆ K(X) be a finitely generated normal OK-subalgebra whose field of
fractions coincides with K(X). Then Spec R arises as an open subscheme
of a compactified model of X over OK .

(ii) Let v be a discrete residue-transcendental [cf. Remark 2.3.1 below] p-
valuation on K(X). Then v arises as the discrete valuation associated to
an irreducible component of the special fiber of a compactified model of X
over OK .

(iii) Let X be a compactified model of X over OK equipped with the action of
a finite group G by OK-linear automorphisms [which thus restrict to K-
linear automorphisms of X]. Then, after possibly replacing K by a finite
field extension of K, there exists a compactified semistable model of X
over OK that dominates X and is stabilized by the action of G on X.
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(iv) Let Y → X be a [connected] finite étale Galois covering of hyperbolic
curves over K, Ysst a compactified semistable model of Y over OK that

is stabilized by G
def
= Gal(Y/X). Write X for the quotient of Ysst by the

natural action of G on Ysst. Then X is a compactified semistable model
of X over OK , and the images of smooth points of Ysst

s via the natural
morphism Ysst

s → Xs are smooth points of Xs. Moreover, the image of a
node of Ysst

s via the natural morphism Ysst
s → Xs is a node of Xs if and

only if G does not permute the branches of the node. In particular,

• the dual graph of Xs may be reconstructed from the dual graph of Ysst
s ,

together with the action of G on the dual graph of Ysst
s .

Finally,

• this reconstruction procedure is functorial, with respect to maps of
vertices/edges to vertices/edges [i.e., as in the discussion of Defi-
nition 2.2, (iii)], on the category of [connected] finite étale Galois
coverings of X over K.

(v) Suppose that we are in the situation of Definition 2.2, (ii), (iii), (iv), (v).

Then the assignment that maps a p-valuation on K(X̃) to its associated
center-chain determines bijections as follows:{

p-valuations on K(X̃)

}
∼→ VE(X̃),{

primitive p-valuations on K(X̃)

}
∼→ VE(X̃)prim,

X̃(Ω)
∼→ VE(X̃)pt-th,

X(Ω)
∼→ VE(X̃)pt-th/Gal(X̃/XK),

where VE(X̃)prim ⊆ VE(X̃) denotes the subset of primitive VE-chains,

and VE(X̃)pt-th ⊆ VE(X̃) denotes the subset of point-theoretic center-
chains.

(vi) Suppose that we are in the situation of (v). Let c ∈ VE(X̃). Write Rc ⊆
K(X̃) for the valuation ring of the p-valuation associated to c [cf. (v)].
Then it holds that

Rc = lim−→
Z
OZ,zc ,

where the direct limit ranges over the set of compactified semistable models
with split reduction Z of the domain curves of connected finite étale cov-
erings Z → X equipped with a factorization X̃ → Z → X; zc denotes the
center on Z determined by Rc; the transition maps in the direct limit are
induced by the corresponding scheme-theoretic morphisms of compactified
semistable models [cf. the discussion of Definition 2.2, (iii)].
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(vii) Suppose that we are in the situation of (v). Suppose, moreover, that X is

proper. Then a p-valuation of K(X̃) is primitive if and only if it is either
real or point-theoretic. Equivalently,

• the set of primitive p-valuations of K(X̃) consists of the disjoint

union of the non-point-theoretic real p-valuations of K(X̃) and the

point-theoretic p-valuations of K(X̃).

In particular, if we write X̃an for the topological pro-Berkovich space as-
sociated to [i.e., the inverse limit of the underlying topological spaces of

the Berkovich spaces associated to the finite subcoverings of] X̃, then

• the set of primitive p-valuations of K(X̃) may be naturally identified

with the underlying set of X̃an.

(viii) Suppose that we are in the situation of (vii). Then there exists a natural
commutative diagram of maps of sets

X̃an ∼−−−−→
θ
X̃

VE(X̃)tory≀ ϵ
X̃

y
VE(X̃)prim −−−−→

ι
X̃

VE(X̃),

where the upper horizontal arrow θX̃ is a homeomorphism [cf. Remark
2.3.3 below]; the lower horizontal arrow ιX̃ denotes the natural inclu-
sion; the left-hand vertical arrow denotes the bijection obtained by form-
ing the composite of the natural identification that appears in the state-
ment of (vi) with the second bijection in the display of (v); the right-
hand vertical arrow ϵX̃ denotes the natural morphism [cf. Definition 2.2,
(vi)]. In particular, ϵX̃ is injective and in fact admits a natural split-

ting τX̃ : VE(X̃) → VE(X̃)tor [i.e., such that τX̃ ◦ ϵX̃ is the identity on

VE(X̃)tor]. On the other hand, neither ιX̃ nor ϵX̃ is surjective [cf. Remark
2.3.4 below].

(ix) Suppose that we are in the situation of (v). Let c1, c2 ∈ VE(X̃) be distinct
elements. Then one of the following conditions holds:

• δ(c1, c2) = +∞.

• δ(c1, c2) = 0, and there exists a unique element c3 ∈ VE(X̃) such
that c3 ⇝ c1 and c3 ⇝ c2.

In particular, if c1 and c2 are distinct primitive elements, then it holds
that δ(c1, c2) = +∞.

(x) Suppose that we are in the situation of (v). Let c ∈ VE(X̃). Then the
cardinality of the set

{c′ ∈ VE(X̃) \ {c} | c′ ⇝ c}
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is at most 1.

(xi) Suppose that we are in the situation of (v). Let Σ ⊆ Primes be a subset;
l ∈ Σ \ {p}; H ⊆ GK a closed subgroup such that the restriction to H of
the l-adic cyclotomic character of K has open image, and, moreover,
the intersection H ∩ IK of H with the inertia subgroup IK of GK admits

a surjection to [the profinite group] Zl; s : H → Π
(Σ)
X a section of the

restriction to H of the natural surjection Π
(Σ)
X ↠ GK . Then there exists

an element c ∈ VE(X̃)prim that is fixed by the restriction, via s, to H of

the natural action of Π
(Σ)
X on VE(X̃)prim ⊆ VE(X̃). In particular, if X is

proper, then there exists an element can ∈ X̃an [cf. (vii)] that is fixed by

the restriction, via s, to H of the natural action of Π
(Σ)
X on the topological

pro-Berkovich space X̃an.

(xii) Let Σ ⊆ Primes be a subset of cardinality ≥ 2 that contains p. Then
there exists a connected geometrically pro-Σ finite étale Galois covering
X† → X satisfying the following conditions:

• X† has split stable reduction.

• Write X † for the [unique, up to unique isomorphism] stable model of
X†. Then X †

s is singular, and every irreducible component of X †
s is

a smooth curve of genus ≥ 2.

Proof. First, we verify assertion (i). Since R is a finitely generated algebra
over OK (⊆ R), it follows that Spec R admits an embedding over OK into
N -dimensional affine space AN

OK
for some positive integer N . Write Z† ⊆ PN

OK

for the scheme-theoretic closure of the image of Spec R in PN
OK

(⊇ AN
OK

); Z for

the normalization of Z†. Thus, the structure sheaf OZ is p-torsion-free, hence
flat over OK . Since, moreover, Z† is [of finite type over the complete discrete
valuation ring OK , hence] excellent, it follows that Z is a proper, flat scheme
of finite type over OK , whose generic fiber may be identified with the [uniquely
determined, up to unique isomorphism] smooth compactification of X over K.
This completes the proof of assertion (i).

Next, we verify assertion (ii). Write A ⊆ K(X) for the discrete valuation
ring associated to v. Note that A may be written as the direct limit [i.e., in
fact, union] of a direct system of finitely generated subalgebras {Ai ⊆ A}i∈I

over OK . Moreover, since the field extension K ⊆ K(X) is finitely generated,
and each Ai is [finitely generated over the complete discrete valuation ring OK ,
hence] excellent, we may assume without loss of generality, i.e., by replacing
Ai by its normalization in K(X), that each Ai is normal with field of fractions
equal to K(X). Write pi ⊆ Ai for the prime ideal determined by the maximal
ideal of A. Thus, since v is a p-valuation [over K], it follows immediately that
each of the natural inclusions OK ↪→ (Ai)pi ↪→ A is a homomorphism of local
rings. Next, let us observe that since the residue field extension determined by
the natural inclusion OK ⊆ A of local rings is assumed to be transcendental,
it follows that there exists an element i ∈ I such that the residue field k(pi)
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of pi is a transcendental extension of the residue field of OK . Let Z be a
compactified model of X over OK that contains Spec Ai as an open subscheme
[cf. Proposition 2.3, (i)]. Then since Z is of dimension 2 [cf. Remark 2.1.1], it
follows that the height of pi is equal to 1 or 2. On the other hand, if pi is of
height 2, then it follows that pi corresponds to a closed point of Zs, hence that
k(pi) is a finite extension of the residue field of OK , i.e., in contradiction to our
assumption of transcendality. Thus, we conclude that pi is of height 1, hence
that (Ai)pi is a discrete valuation ring whose field of fractions is equal to K(X).
But this implies that (Ai)pi

= A. This completes the proof of assertion (ii).
Next, we verify assertion (iii). First, we observe that, after possibly replac-

ing K by a suitable finite extension field of K, there exists a G-equivariant
finite morphism X → P1

OK
to the projective line over OK [equipped with the

trivial action by G]. Indeed, since OK is a complete discrete valuation ring, by
deforming any [suitably large positive power of a] very ample line bundle on the
projective curve Xs, we obtain a very ample line bundle L on X , hence, after
possibly replacing K by a suitable finite extension field of K, a pair of global
sections σ1, σ2 of the line bundle L such that the G-orbit of the zero locus of
σ1 is disjoint from the G-orbit of the zero locus of σ2. Thus, for i = 1, 2, the
product σG

i of the G-translates of σi determines a global section of the [still very
ample!] tensor product LG of G-translates of L such that σG

1 and σG
2 still have

disjoint zero loci, hence determine a G-equivariant finite morphism X → P1
OK

over OK , as desired. Fix such a finite morphism, and write f ∈ K(X) for the
rational function on X determined by the standard coordinate function on P1

OK
.

Next, we recall that it follows from the stable reduction theorem [cf. [DM],
[Knud]] that, after possibly replacing K by a suitable finite extension field of K,
we may assume without loss of generality that every closed point in the support
Supp(f) [in the smooth compactification of X] of the principal divisor associ-
ated to f is K-rational, and that X has stable reduction over K. Moreover, by
replacing X by a suitable G-stable open subscheme of X, we may assume with-
out loss of generality that Supp(f) is contained in the set of cusps of X. Write
X † for the compactified stable model of X over OK ; E ⊆ X † for the reduced
closed subscheme determined by the set of closed points where an irreducible
component of the zero divisor of f on X † intersects an irreducible component
of the divisor of poles of f on X †. Thus, the action of G on X extends to X †.
Let x ∈ E. Write ÔX †,x for the completion of the local ring of X † at x. Fix a
uniformizer πK ∈ OK .

Next, suppose that x is a smooth closed point of X †. Then there exist
nonzero integers a, b of opposite sign and a unit u ∈ (OK [[t]])× [where t denotes
an indeterminate], together with an isomorphism of topological OK-algebras

ÔX †,x
∼→ OK [[t]], such that the image of f in the field of fractions of ÔX †,x (

∼→
OK [[t]]) is of the form u·ta ·πb

K . Next, observe that, by replacingK by a suitable
finite extension field of K [so it may no longer be the case that the element “πK”
is a uniformizer of OK !], we may assume without loss of generality that there
exists an element γ ∈ OK such that γa = π−b

K . Write xη for the K-valued point
of the smooth compactification of X determined by the section of the structure
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morphism X † → Spec OK corresponding to the homomorphism of topological
OK-algebras

(ÔX †,x
∼→) OK [[t]] −→ OK

that maps t 7→ γ ∈ OK ; x′η for the K-valued point of the smooth compactifica-

tion of X determined by the section of the structure morphism X † → Spec OK

corresponding to the homomorphism of topological OK-algebras

(ÔX †,x
∼→) OK [[t]] −→ OK

that maps t 7→ 0 ∈ OK ; X †[x] for the compactified stable model of X \ {xη, x′η}
over OK . Thus, it follows immediately from the theory of pointed stable curves,
as exposed in [Knud], that the natural inclusion X \ {xη, x′η} ↪→ X determines

a natural birational, dominant morphism X †[x]→ X †. Finally, we observe that
it follows immediately from the various definitions involved that the rational
function f is a unit [at xη, hence] at the generic point of the unique irreducible
component of (X †[x])s that maps to a closed point of X †

s ; in particular, the
zero divisor of f does not intersect the divisor of poles of f in some Zariski
neighborhood of this irreducible component.

Next, suppose that x is a nonsmooth closed point of X †. Then since the
two irreducible components of (Spec ÔX †,x)s are Q-Cartier divisors, it follows
that there exist positive integers a, b, r and a unit u ∈ (OK [[s, t]]/(st− πr

K))×

[where s, t denote indeterminates], together with an isomorphism of topological

OK-algebras ÔX †,x
∼→ OK [[s, t]]/(st−πr

K), such that the image of some positive

power of f in the field of fractions of ÔX †,x (
∼→ OK [[s, t]]/(st − πr

K)) is of the
form u ·sa ·t−b. Next, observe that, by replacing K by a suitable finite extension
field ofK [so it may no longer be the case that the element “πK” is a uniformizer
of OK !], we may assume without loss of generality that there exists an element
γ ∈ OK such that γa+b = πK . Write xη for the K-valued point of the smooth
compactification of X corresponding to the section of the structure morphism
X † → Spec OK induced by the homomorphism of topological OK-algebras

(ÔX †,x
∼→) OK [[s, t]]/(st− πr

K) −→ OK

that maps s 7→ γbr ∈ OK , t 7→ γar ∈ OK ; x′η
def
= xη; X †[x] for the compactified

stable model of X \ {xη, x′η} = X \ {xη} over OK . Thus, it follows immediately
from the theory of pointed stable curves, as exposed in [Knud], that the natural
inclusion X \ {xη, x′η} = X \ {xη} ↪→ X determines a natural birational, dom-

inant morphism X †[x] → X †. Finally, we observe that it follows immediately
from the various definitions involved that the rational function f is a unit [at xη,
hence] at the generic point of the unique irreducible component of (X †[x])s that
maps to a closed point of X †

s ; in particular, the zero divisor of f does not in-
tersect the divisor of poles of f in some Zariski neighborhood of this irreducible
component.

Next, observe that the underlying set of E is finite. Thus, by replacing X
by a suitable G-stable open subscheme of X, we may assume without loss of
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generality that for each x ∈ E, the K-valued points xη, x
′
η constructed above

are contained in the set of cusps of X. Then it follows immediately from the
above discussion that the zero divisor of f on X † does not intersect the divisor
of poles of f on X †. But this implies that f determines a G-equivariant domi-
nant morphism X † → P1

OK
over OK whose restriction to the respective generic

fibers coincides with the restriction to the respective generic fibers of the finite
morphism X → P1

OK
over OK constructed above. Thus, since X † is normal, we

conclude that the morphism X † → P1
OK

admits a factorization X † → X → P1
OK

,
as desired. This completes the proof of assertion (iii).

Next, we verify assertion (iv). First, we observe that since the operation of
forming the quotient of Ysst by G commutes with flat base-change, one verifies
immediately that it suffices to verify assertion (iv) after performing any finite,
faithfully flat base-change from OK to the ring of integers in a finite extension
field of K. In particular, by replacing K by a suitable finite extension field of K,
we may assume without loss of generality that the cusps of X are K-rational,
and that X has stable reduction over K [cf. [DM], [Knud]]. [In fact, these
conditions are satisfied even if one does not pass to a finite extension field of
the original given K, but we omit a proof of this fact since it is not logically
necessary for the present discussion.] Write X st for the compactified stable
model of X over OK .

Next, let us observe that, after possibly replacing K by a suitable finite
extension field of K, one may regard Ysst as the compactified stable model
associated to the hyperbolic curve Y ′ obtained by removing from Y a collection
of G-orbits of K-rational points of Y such that the cardinality of the set of
G-orbits of closed points of Ysst

s contained in the intersection of any irreducible
component of Ysst

s with the image of the corresponding collection of OK-rational
points of Ysst is ≥ 3. In particular, one verifies immediately that, by replacing
Y by Y ′, we may assume without loss of generality that the cardinality of the
set of closed points of each irreducible component of Xs that lie in the image of
the cusps of Ysst is ≥ 3.

Next, let us observe that it follows immediately from the definition of the
natural quotient morphism Ysst → X that the natural morphism Ysst → X st

over OK induced by the morphism Y → X [cf. [ExtFam], Theorem A] admits
a factorization

Ysst −→ X −→ X st,

where we note that it follows immediately from the definition of X that X is a
compactified model of X over OK .

Thus, it follows immediately from the above discussion of Ysst, together with
the theory of pointed stable curves, as exposed in [Knud], that the morphism
X → X st is birational and quasi-finite, hence, by Zariski’s Main Theorem, an
isomorphism. In particular, we conclude that X is a compactified semistable
model of X over OK . Moreover, it follows immediately from Remark 2.1.3 that
the natural morphism Ysst

s → Xs maps smooth points of Ysst
s to smooth points

of Xs.
Next, let eY ∈ Ysst

s be a node. Write eX ∈ Xs for the image of eY via the
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natural morphism Ysst
s → Xs; GeY ⊆ G for the stabilizer of eY in G; Ysst

eY for the
spectrum of the completion of the local ring of Ysst at eY ; XeX for the spectrum
of the completion of the local ring of X at eX . Thus, GeY acts naturally on
Ysst
eY ; XeX may be identified with the quotient of Ysst

eY by the action of GeY ; the
set BY of irrreducible components of (Ysst

eY )s may be identified with the set [of
cardinality 2] of branches of eY ; the set BX of irrreducible components of (XeX )s
is of cardinality 1 if and only if eX is a smooth point of Xs and may be identified
with the set [of cardinality 2] of branches of eX whenever eX is a node. On the
other hand, it follows immediately from elementary commutative algebra that
the set BX may be naturally identified with the set of GeY -orbits of BY . The
remaining portion of assertion (iv) now follows formally. This completes the
proof of assertion (iv).

Next, we verify assertions (v) and (vi). Let c ∈ VE(X̃). Write

Rc
def
= lim−→

Z
OZ,zc ,

where

• Z ranges over the compactified semistable models with split reduction of
the domain curves of connected finite étale coverings Z → X equipped
with a factorization X̃ → Z → X;

• cZ denotes the irreducible component or node of Zs determined by c;

• zc denotes the generic point of the intersection of the [closed irreducible]
images in Zs of the cZ† associated to compactified semistable models
with split reduction of domain curves of connected finite étale coverings
Z† → X equipped with a factorization X̃ → Z† → Z → X such that the
morphism Z† → Z extends to a morphism Z† → Z;

• the transition maps in the direct limit are the homomorphisms of local
rings induced by the corresponding scheme-theoretic morphisms of com-
pactified semistable models [which form a directed inverse system — cf.
Proposition 2.3, (iii)].

Then it follows immediately from the various definitions involved that the field
of fractions of Rc coincides with K(X̃), that OK ⊆ Rc, and that Rc is a local

domain whose maximal ideal mRc
contains p. Let R̃c ⊆ K(X̃) be a valuation

ring that dominates Rc [cf., e.g., [EP], Theorem 3.1.1]. Write mR̃c
⊆ R̃c for the

maximal ideal of R̃c. Thus, since OK ⊆ OK ⊆ Rc ⊆ R̃c and p ∈ mRc
⊆ mR̃c

, we

conclude that OK = K∩R̃c, i.e., that the valuation determined by the valuation
ring R̃c is a p-valuation.

Note that R̃c may be written as the direct limit [i.e., in fact, union] of a direct

system of finitely generated subalgebras {Ri ⊆ R̃c}i∈I over OK . Moreover,
since Ri is [finitely generated over the complete discrete valuation ring OK ,

hence] excellent, by replacing Ri by its normalization in the subfield of K(X̃)
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generated by the field of fractions of Ri and some suitable finite extension field
of K, we may assume without loss of generality that Ri is normal, and that
there exists a compactified semistable model with split reduction Zi of the
domain curve of a connected finite étale covering Zi → X equipped with a
factorization X̃ → Zi → X such that Spec Ri arises as an open subscheme of

Zi [cf. Proposition 2.3, (i), (iii)]. Write pi
def
= mR̃c

∩Ri ⊆ Ri. Thus, if we write
zi for the point of Zi that corresponds to pi, then it holds that

R̃c = lim−→
i∈I

OZi,zi .

On the other hand, observe that, since mR̃c
∩Rc = mRc

, it follows immediately
from the various definitions involved that each “OZi,zi (= (Ri)pi

)” of the above
direct limit appears as one of the “OZ,zc” in the direct limit used to define Rc.

In particular, we conclude that R̃c ⊆ Rc ⊆ R̃c, hence that Rc = R̃c, i.e., that Rc

is the valuation ring associated to a p-valuation. Thus, in summary, we obtain
a natural map

VE(X̃) −→
{
p-valuations on K(X̃)

}
that maps VE(X̃) ∋ c 7→ Rc. Moreover, one verifies immediately that this map
defines an inverse to the natural map{

p-valuations on K(X̃)

}
−→ VE(X̃)

in the statement of assertion (v), hence that both of these maps are bijective.
Since both of these maps are manifestly compatible with specialization/generization,
we thus conclude that these induce a bijection{

primitive p-valuations on K(X̃)

}
∼→ VE(X̃)prim

as in the statement of assertion (v).
Thus, to complete the proof of assertion (v), it suffices to verify that the

natural map

X̃(Ω) −→
{
p-valuations on K(X̃)

}
[i.e., that assigns to an element of X̃(Ω) the associated point-theoretic valuation

on K(X̃)] is injective. To this end, let x̃ ∈ X̃(Ω). Write v for the point-theoretic

valuation on K(X̃) associated to x̃. Then observe that x̃ is defined over K if and

only if the inclusion Ov ·K ⊆ K(X̃) is strict. If this inclusion is strict, then the

subring Ov ·K ⊆ K(X̃) is the valuation ring determined [i.e., in the usual sense
of the classical theory of one-dimensional function fields over algebraically closed
fields] by x̃. In particular, whenever the inclusion Ov ·K ⊆ K(X̃) is strict, the

point x̃ ∈ X̃(K) (⊆ X̃(Ω)) is completely determined by v. Thus, it remains to
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consider the case where Ov ·K = K(X̃). In this case, the valuation v is real, and

the inclusion K ⊆ K(X̃) induces, by passing to the respective completions, an

isomorphism of Ω with the completion of K(X̃) with respect to v. In particular,

we obtain a natural homomorphism K(X̃) → Ω, which completely determines

the point x̃ ∈ X̃(Ω). This completes the proof of assertion (v). Assertion (vi)
follows immediately from the proof of assertion (v).

Next, we verify assertion (vii). Let x ∈ X̃(Ω). Write v for the point-theoretic

valuation on K(X̃) associated to x; ϕx : Ov → OΩ for the homomorphism
obtained by evaluating rational functions at x. Let q ⊆ Ov be a prime ideal
that contains p. Then observe that it follows immediately from the construction
of v that 1

p ·Ker(ϕx) ⊆ Ker(ϕx). Since p ∈ q, we thus conclude that Ker(ϕx) ⊆ q.

On the other hand, observe that [it follows immediately from the construction
of v that] this inclusion implies that q contains [hence coincides with] the radical
of the ideal (p,Ker(ϕx)) ⊆ Ov, which is easily seen to be equal to the maximal
ideal mv of Ov. Thus, we conclude that v is primitive.

Next, let v be a real p-valuation on K(X̃). Let a ∈ mv. Then since v is real,
there exists a positive integer N such that aN ∈ (p). In particular, any prime
ideal that contains p contains [hence coincides with] mv. Thus, we conclude that
v is primitive.

Next, let v be a primitive p-valuation on K(X̃). For each z ∈ Ov, write

(Ov)z ⊆ K(X̃) for the Ov-subalgebra generated by 1
z . Thus, if (K ⊆) (Ov)p ̸=

K(X̃), then it follows immediately from the classical theory of one-dimensional
function fields over algebraically closed fields that v is a point-theoretic valuation.
Therefore, we may assume without loss of generality that (Ov)p = K(X̃). Note
that this implies that for each x ∈ Ov \{0}, there exist a positive integer N and
y ∈ Ov such that pN = xy. Moreover, in this situation, it holds that

mKOv = mv.

Indeed, since v is a p-valuation, the inclusion mKOv ⊆ mv is immediate. Now
suppose that there exists an element x ∈ mv \ mKOv. Then it follows that
1
p ̸∈ (Ov)x, hence that there exists a prime ideal pv of Ov such that x ̸∈ pv, and
p ∈ pv. On the other hand, since v is primitive, we conclude that x ∈ mv = pv,
a contradiction. This completes the proof of the equality in the above display.
Note that this equality implies that for each x ∈ mv \ {0}, there exist a positive
integer N and y ∈ Ov such that xN = py. In particular, it follows immediately
from the various definitions involved that v coincides with the real valuation
determined by the assignment

Ov \ {0} ∋ x 7→ sup{ϵ ∈ Q | x ∈ pϵ · Ov} = inf{ϵ ∈ Q | x−1 ∈ p−ϵ · Ov} ∈ R.

This completes the proof of assertion (vii).
Next, we verify assertion (viii). First, let us observe that it follows immedi-

ately from the final portion of Proposition 2.3, (vii), that the natural map

X̃an −→ VE(X̃)
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— i.e., that assigns to a valuation on K(X̃) the center-chain associated to the
valuation — admits a factorization

X̃an ∼→ VE(X̃)prim −→
ι
X̃

VE(X̃),

where the first arrow is a bijection, and the second arrow ιX̃ denotes the natural
inclusion. On the other hand, it follows immediately from the discussion of the
ratios “ρb,v” in Remark 2.1.4 and the construction of “VE(X̃)tor” in Definition

2.2, (vi), that this natural map X̃an → VE(X̃) also admits a factorization

X̃an −→
θ
X̃

VE(X̃)tor −→
ϵ
X̃

VE(X̃),

where the first map θX̃ is defined by considering ratios “ρb,v” as in Remark 2.1.4

[cf. also the construction of “VE(X̃)tor” in Definition 2.2, (vi)], and the second
arrow ϵX̃ is the natural map discussed in the final portion of Definition 2.2, (vi).
In particular, we obtain a commutative diagram of maps of sets

X̃an −−−−→
θ
X̃

VE(X̃)tory≀ ϵ
X̃

y
VE(X̃)prim −−−−→

ι
X̃

VE(X̃).

Note that the commutativity of the diagram already implies that θX̃ is injective.
Moreover, one verifies immediately — i.e., by considering suitable “v” as in
Remark 2.1.4 — that each composite map θZ

X̃an −→
θ
X̃

VE(X̃)tor −→ VE(Z)tor

—where the second arrow is the natural projection arising from the inverse limit
in the definition of VE(X̃)tor [cf. Definition 2.2, (vi)] — has dense image. Thus,

it follows from the compactness of X̃an [cf. [Brk], Theorem 1.2.1], together
with the easily verified fact [cf. the construction of Definition 2.2, (vi)] that
VE(Z)tor is Hausdorff, that to verify that θX̃ is a homeomorphism, it suffices to
verify that each map θZ is continuous. Moreover, once one knows that θX̃ is a
homeomorphism, one may construct a natural splitting τX̃ as in the statement
of Proposition 2.3, (viii), by constructing a natural splitting of the natural

inclusion ιX̃ . On the other hand, such a natural splitting VE(X̃)→ VE(X̃)prim

of ιX̃ is implicit in the content of Proposition 2.3, (x) [which will be verified
below, independently of the present assertion (viii)], i.e., one assigns to each

nonprimitive element c ∈ VE(X̃) the unique generization ∈ VE(X̃)prim of c.
Thus, in summary, to complete the proof of assertion (viii), it suffices to

verify that each map
θZ : X̃an −→ VE(Z)tor

as in the above discussion is continuous. Let Z† be a toral compactified semistable
model relative to Z. Then we shall refer to an open subscheme U of Z†

s as a

46



componentwise open of Z† if U is an open subscheme of Z†
s whose underlying

open subset is the complement of a node or an irreducible component of Z†
s .

Observe that it follows immediately from the construction of VE(Z)tor given in
Definition 2.2, (vi), that each componentwise open of each toral compactified
semistable model relative to Z determines, in a natural way, a closed subset of
VE(Z)tor. We shall refer to the closed subsets of VE(Z)tor obtained in this way
as componentwise closed subsets of VE(Z)tor. Note that it follows immediately
from the construction of VE(Z)tor given in Definition 2.2, (vi), that the com-
plements of the componentwise closed subsets of VE(Z)tor form an open basis
of the topology of VE(Z)tor. Thus, to complete the proof of the contininuity
of θZ , it suffices to verify that the inverse image via θZ of any componentwise
closed subset of VE(Z)tor is closed in X̃an. But this follows immediately from
the definition of the topology of the Berkovich spaces [cf. the discussion of [Brk],

§1.1, §1.2] that appear in the inverse limit that is used to define “X̃an” in the
statement of Proposition 2.3, (vii). This completes the proof of assertion (viii).

Next, we verify assertion (ix). In the following, we assume that δ(c1, c2) ̸=
+∞.

Let us first consider the case where δ(c1, c2) ≥ 1. Then it follows immediately
from the definition of δ(−,−) that there exists a compactified semistable model
Z with split reduction of a connected finite étale covering Z → X equipped
with a factorization X̃ → Z → X such that δ(zc1 , zc2) ≥ 1 [cf. the notation
of Proposition 2.3, (vi)]. In particular, there exists a node e of Zs that does
not coincide with zc1 or zc2 , and whose corresponding edge lies on a path of
minimal length between zc1 and zc2 . On the other hand, by considering suitable
torally compactified semistable models relative to Z at e, we conclude that
δ(c1, c2) = +∞, in contradiction to our assumption that δ(c1, c2) ̸= +∞.

Thus, to complete the proof of assertion (ix), it suffices to consider the case
where δ(c1, c2) = 0. Let us first observe that the condition that δ(c1, c2) = 0

implies the existence of an element c3 ∈ VE(X̃) such that c3 ⇝ c1 and c3 ⇝ c2.

Finally, we verify the uniqueness of such an element c3 ∈ VE(X̃). Let c4 ∈
VE(X̃) be such that c3 ̸= c4, c4 ⇝ c1, and c4 ⇝ c2. Then since δ(c3, c4) < +∞,
it follows immediately from the above discussion that there exists an element
c5 ∈ VE(X̃) such that c5 ⇝ c3, and c5 ⇝ c4. Moreover, since c1 ̸= c2, and
c3 ̸= c4, by permuting {c3, c4} or {c1, c2} if necessary, we may assume without
loss of generality that c5 ̸= c3, and c3 ̸= c1. On the other hand, the resulting
nontriviality of the specialization relations c5 ⇝ c3 ⇝ c1 then contradicts the
1-dimensionality of the special fibers of the compactified semistable models “Z”
that appear in the definition of VE(X̃). This completes the proof of assertion
(ix).

Next, we verify assertion (x). Write c1
def
= c. Suppose that c2 ⇝ c1, c

′
2 ⇝ c1

for distinct elements c2, c
′
2 ∈ VE(X̃) \ {c1}. Then it follows that δ(c2, c

′
2) <

+∞. Thus, we conclude from Proposition 2.3, (ix), that there exists an element

c3 ∈ VE(X̃) such that c3 ⇝ c2, and c3 ⇝ c′2. In particular, by permuting
{c2, c′2} if necessary, we may assume without loss of generality that c3 ̸= c2,
and c2 ̸= c1. On the other hand, the resulting nontriviality of the specialization
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relations c3 ⇝ c2 ⇝ c1 then contradicts the uniqueness portion of Proposition
2.3, (ix). This completes the proof of assertion (x).

Next, we verify assertion (xi). Let Z → X be a [connected] finite étale Ga-

lois covering equipped with a factorization X̃ → Z → X such that Z has split
stable reduction over K; Z∗ a compactified semistable model with split reduc-
tion of Z over OK that is stabilized by the natural action of Gal(Z/X). [Note
that it follows immediately from Proposition 2.3, (iii), that such compactified
semistable models form a directed inverse system that is cofinal in the directed
inverse system that appears in the definition of VE(X̃).] Write Z for the com-
pactified stable model with split reduction of Z over OK ; Γ for the dual graph
of Zs; Γ

∗ for the dual graph of Z∗
s . Observe that the natural action of s(H) on

Γ∗ factors through a finite quotient of s(H). Thus, it follows immediately from
[CbTpIV], Corollary 1.15, (iii), that the natural action of s(H) on Γ has a fixed
point c ∈ Γ. On the other hand, it follows immediately from the well-known
theory of stable and semistable models [i.e., which may be reduced, by adding
finitely many suitably positioned cusps, to the theory of pointed stable curves
and contraction morphisms that arise from eliminating cusps, as exposed in
[Knud]] that the inverse image of [the node or interior of an irreducible compo-
nent in Z∗

s corresponding to] c via the dominant morphism Z∗ → Z determines
a tree inside Γ∗. Moreover, we recall that any action of a finite group on a tree
has a fixed point [cf., e.g., [SemiAn], Lemma 1.8, (ii)]. Thus, we conclude that
the natural action of s(H) on Γ∗ has a fixed point. Since any inverse limit of
nonempty finite sets is nonempty, we thus conclude that the natural action of
s(H) on VE(X̃) has a fixed point ∈ VE(X̃), hence from Proposition 2.3, (x),

that the natural action of s(H) on VE(X̃)prim has a fixed point ∈ VE(X̃)prim.
This completes the proof of assertion (xi).

Next, we verify assertion (xii). Fix a prime number l ∈ Σ\{p}. Then observe
that it follows from the stable reduction theorem [cf. [DM], [Knud]] that, after
possibly replacing K by a suitable finite extension field of K, we may assume
without loss of generality that Σ = {p, l}, and that X has stable reduction over
K. Write X for the [unique, up to unique isomorphism] compactified stable
model of X over OK .

Next, observe that it follows immediately from Hurwitz’s formula, together
with the well-known structure of geometric fundamental groups of hyperbolic
curves over fields of characteristic zero [cf., e.g., [CmbGC], Remark 1.1.3], that,
after possibly replacing K by a suitable finite extension field of K, there exists a
connected geometrically pro-p finite étale covering Y → X of hyperbolic curves
with split stable reduction over K that satisfies the condition that Y is of genus
gY ≥ 2. Write Y † for the smooth compactification of Y over K; Y† for the
[unique, up to unique isomorphism] compactified stable model of Y † over OK .
Then observe that, if Y† is smooth over OK , then it follows immediately from
the non-injectivity of the natural surjective homomorphism

Πab
Y † ⊗ Z/pZ↠ Πab

Y†
s
⊗ Z/pZ

[where we recall that, since Y † is of genus gY † ≥ 2, the domain of this homo-
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morphism is of cardinality p2gY † , while the codomain of this homomorphism is
of cardinality ≤ pgY † ], together with Hurwitz’s formula [cf. also Zariski-Nagata
purity; [ExtFam], Theorem A], that, after possibly replacing K by a suitable
finite extension field of K, there exists a [connected] finite étale cyclic covering
Y ‡ → Y † of hyperbolic curves over K that is of degree p and, moreover, satisfies
the property that Y ‡ has bad reduction. In particular, by replacing Y ‡×Y † Y by
Y , we may assume without loss of generality that Y has bad reduction. More-
over, by replacing the connected geometrically pro-p finite étale covering Y → X
by its Galois closure, we may assume without loss of generality that Y → X is
a [connected] geometrically pro-p finite étale Galois covering [cf. Remark 2.1.3;
Hurwitz’s formula].

Next, observe that it follows immediately from the theory of admissible cov-
erings [cf., e.g., [Hur], §3], together with Hurwitz’s formula [and the well-known
structure of geometric pro-l fundamental groups of hyperbolic curves over fields
of characteristic p ̸= l — cf., e.g., [CmbGC], Remark 1.1.3], that, after possibly
replacing K by a suitable finite extension field of K, there exists a [connected]
geometrically pro-l finite étale Galois covering Z → Y of hyperbolic curves with
split stable reduction over K that satisfies the condition that every irreducible
component of the special fiber of the [unique, up to unique isomorphism] sta-
ble model of Z is a smooth curve of genus ≥ 2. Here, note that, by replacing
Z → Y by the composite of the Gal(Y/X)-conjugates of the admissible covering
Z → Y , we may assume without loss of generality that the composite covering

Z → Y → X is Galois. Thus, by taking X† def
= Z, we obtain a [connected]

geometrically pro-Σ finite étale Galois covering X† → X of hyperbolic curves
satisfying the conditions in the statement of assertion (xii), as desired. This
completes the proof of assertion (xii), hence of Proposition 2.3.

Remark 2.3.1. We maintain the notation of Proposition 2.3. Then we observe
that the statement of Proposition 2.3, (ii), becomes false if one omits the con-
dition that the p-valuation v is residue-transcendental. Indeed, it suffices to
construct an example of a discrete p-valuation on K(X) whose residue field is
algebraic over the residue field of OK . Suppose that no finite extension field of
the residue field of OK is separably closed [a condition that is satisfied if, for
instance, the residue field of OK is finite]. Then one verifies immediately that

X(K̂ur) \X(K) ̸= ∅, and that for any x ∈ X(K̂ur) \X(K), the point-theoretic
valuation associated to x on K(X) satisfies the desired properties.

Remark 2.3.2. An alternative proof of Proposition 2.3, (iv), may be found in
[Ray2], Proposition 5. The proof of Proposition 2.3, (iv), given in the present
paper is of interest in that it involves techniques that are closer to the overall
approach of the present paper.
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Remark 2.3.3. The homeomorphism X̃an ∼→ VE(X̃)tor of Proposition 2.3, (viii),
is essentially the same as the homeomorphism of [Lpg1], Proposition 1.1, but
we give [essentially] self-contained statements and proofs here in the language
of the present discussion for the sake of completeness.

Remark 2.3.4. We maintain the notation of Proposition 2.3. Let X be a com-
pactified semistable model of X over OK ; x ∈ X a smooth closed point. Write
η for the generic point of the unique irreducible component of Xs that contains
x. Then one may construct a p-valuation v on K(X) associated to x by taking
the ring of integers Ov to consist of the elements ∈ K(X) that are integral with
respect to the discrete valuation on K(X) associated to η and, moreover, map
to an element in the residue field k(η) of X at η that is integral with respect to
the discrete valuation on k(η) determined by x. Note that η determines a prime
ideal of Ov that contains p. In particular, v is nonprimitive.

Proposition 2.4 (First properties of resolution of nonsingularities). Let
Σ ⊆ Primes be a nonempty subset; K a mixed characteristic complete discrete
valuation field of residue characteristic p; X a hyperbolic curve over K. Then:

(i) Let U ⊆ X be an open subscheme [so U is a hyperbolic curve over K].
Suppose that X satisfies Σ-RNS. Then it holds that U satisfies Σ-RNS.

(ii) Let f : Y → X be a connected geometrically pro-Σ finite étale covering
over K [so Y is a hyperbolic curve over a finite extension field of K].
Then it holds that X satisfies Σ-RNS if and only if Y satisfies Σ-RNS.

(iii) Suppose that X satisfies the following condition:

Let X be a compactified model of X over OK ; x ∈ Xs a closed
point. Then, after possibly replacing K by a suitable finite ex-
tension field of K, there exist

• a connected geometrically pro-Σ finite étale Galois covering
Y → X of hyperbolic curves over K,

• a compactified semistable model Y of Y over OK ,

• a morphism Y → X of compactified models over OK that
restricts to the finite étale Galois covering Y → X,

• an irreducible component D of Ys whose normalization is
of genus ≥ 1, and whose image in Xs is x ∈ Xs.

Then X satisfies Σ-RNS.

(iv) Suppose that X satisfies Σ-RNS. Let X be a compactified model of X over
OK . Then, after possibly replacing K by a suitable finite extension field of
K, there exists a connected geometrically pro-Σ finite étale Galois covering
Y → X over K, together with a compactified stable model Y of Y over
OK , such that the covering Y → X extends to a morphism Y → X .
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(v) Suppose that we are in the situation of Proposition 2.3, (v), and that X
satisfies Σ-RNS. Write

VE(X̃)st, VE(X̃)st,tor, VE(X̃)st,prim, VE(X̃)st,pt-th

for the modified versions of VE(X̃), VE(X̃)tor, VE(X̃)prim, VE(X̃)pt-th

obtained by requiring that the compactified semistable models “Z” that
appear in the inverse limits used to define these sets be compactified
stable models. [Here, we observe that, in light of (iv), the various toral
compactified semistable models “Z†” relative to “Z” that appear in the
construction of “VE(Z)tor” in Definition 2.2, (vi), may be understood as
being obtained as the result of contracting suitable irreducible components
in the special fibers [cf. Remark 2.1.6] of suitable quotients of compactified
stable models as in Proposition 2.3, (iv).] Then the natural maps

VE(X̃) −→ VE(X̃)st

VE(X̃)tor −→ VE(X̃)st,tor

VE(X̃)prim −→ VE(X̃)st,prim

VE(X̃)pt-th −→ VE(X̃)st,pt-th

are bijective.

(vi) Suppose that we are in the situation of Proposition 2.3, (v). Then X

satisfies Σ-RNS if and only if for each c ∈ VE(X̃), it holds that

Rc = lim−→
Zst

OZst,zc ,

where Rc ⊆ K(X̃) denotes the valuation ring of the p-valuation associ-
ated to c [cf. Proposition 2.3, (v)]; the direct limit ranges over the set of
compactified stable models with split reduction Zst of the domain curves
of connected finite étale coverings Z → X equipped with a factorization
X̃ → Z → X; zc denotes the center on Zst determined by Rc; the tran-
sition maps in the direct limit are induced by the corresponding scheme-
theoretic morphisms of compactified stable models [which, in light of (iv),
form a directed inverse system].

(vii) Suppose that we are in the situation of Proposition 2.3, (v), and that
X satisfies Σ-RNS. Let l ∈ Σ \ {p}; H ⊆ GK a closed subgroup such
that the intersection H ∩ IK of H with the inertia subgroup IK of GK

admits a surjection to [the profinite group] Zl; s : H → Π
(Σ)
X a section

of the restriction to H of the natural surjection Π
(Σ)
X ↠ GK . Then there

exists at most one element c ∈ VE(X̃)prim that is fixed by the restriction,

via s, to H of the natural action of Π
(Σ)
X on VE(X̃)prim ⊆ VE(X̃); if,

moreover, the restriction to H of the l-adic cyclotomic character of K
has open image, then there exists a unique such element c ∈ VE(X̃)prim. In
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particular, if X is proper, then there exists at most one element can ∈ X̃an

[cf. Proposition 2.3, (vii)] that is fixed by the restriction, via s, to H of

the natural action of Π
(Σ)
X on the topological pro-Berkovich space X̃an; if,

moreover, the restriction to H of the l-adic cyclotomic character of
K has open image, then there exists a unique such element can ∈ X̃an.

Proof. Assertions (i), (ii) follow immediately from the various definitions in-
volved. Next, we verify assertion (iii). Let v be a discrete residue-transcendental
p-valuation on K(X). Then it follows immediately from Proposition 2.3, (ii),
(iii), that, after possibly replacing K by a suitable finite extension field of K,
there exists a compactified semistable model X of X over OK such that v
arises from an irreducible component of Xs. Let {x1, . . . , xN} ⊆ Xs be a fi-
nite set of distinct closed points in the smooth locus of Xs such that every
irreducible component of Xs whose normalization is of genus 0 contains three
points ∈ {x1, . . . , xN}. Then it follows immediately from our assumption on
X that, after possibly replacing K by a suitable finite extension field of K, for
each positive integer i ≤ N , there exist

• a connected geometrically pro-Σ finite étale Galois covering Yi → X over
K,

• a morphism fi : Yi → X of compactified semistable models over OK that
restricts to the finite étale Galois covering Yi → X,

• an irreducible component Di of (Yi)s whose normalization is of genus ≥ 1,
and whose image in Xs is xi.

Write fη : Y → X for the connected geometrically pro-Σ finite étale Galois
covering over K obtained by forming the composite of the finite étale Galois
coverings {Yi → X}1≤i≤N over K. Then it follows immediately from Propo-
sition 2.3, (iii), that, after possibly replacing K by a suitable finite extension
field of K, there exists a compactified semistable model Y† of Y over OK that
dominates the respective normalizations of the semistable models {Yi}1≤i≤N in
the function field of Y . In particular, for each positive integer i ≤ N , there
exists an irreducible component D†

i of (Y†)s whose normalization is of genus
≥ 1, and whose image in Xs is xi.

Next, let us observe that it follows immediately from the theory of pointed
stable curves, as exposed in [Knud], that, after possibly replacing K by a suit-
able finite extension field of K, we may regard Y† as the compactified stable
model associated to the hyperbolic curve Y † obtained by removing from Y a
collection of K-rational points of Y . In a similar vein, it follows immediately
from the theory of pointed stable curves, as exposed in [Knud], that, after pos-
sibly replacing K by a suitable finite extension field of K and replacing Y † by a
suitable Gal(Y/X)-stable dense open subscheme of Y †, we may assume without
loss of generality that Y† is stabilized by the action of Gal(Y/X).

Write
f† : Y† → X
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for the natural dominant morphism that restricts to the finite étale Galois cov-
ering fη : Y → X;

κ† : Y† → Yst

for the natural dominant morphism to a compactified stable model Yst of Y
over OK [cf. [ExtFam], Theorem A]. Thus, for each positive integer i ≤ N ,

f†(D†
i ) = xi ∈ Xs. In particular, since the covering fη : Y → X is Galois,

and Y† is stabilized by the action of Gal(Y/X), it follows immediately from
Zariski’s Main Theorem that, for each positive integer i ≤ N , the inverse image
(f†)−1(xi) ⊆ Y†

s is a closed subscheme that containsD†
i and is pure of dimension

1. Here, we recall thatD†
i is an irreducible component of Y†

s whose normalization
is of genus ≥ 1, hence necessarily maps birationally, via κ†, to an irreducible
component of Yst

s . In particular, we conclude that each connected component of
(f†)−1(xi) ⊆ Y†

s contains an irreducible component of Y†
s that maps birationally,

via κ†, to an irreducible component of Yst
s .

Next, let D† ⊆ Y†
s be an irreducible component of Y†

s that maps to a closed
point κ†(D†) of Yst

s via κ† : Y† → Yst, but dominates an irreducible component

E
def
= f†(D†) of Xs. Note that these assumptions imply that the normalization

of D† is of genus 0, and hence that E is an irreducible component of Xs whose
normalization is of genus 0. Thus, we conclude [cf. the condition imposed on
the subset {x1, . . . , xN} ⊆ Xs] that E contains three points ∈ {x1, . . . , xN},
i.e., [since (f†)−1(xi) is pure of dimension 1] that D† contains at least 3 nodes
[that map to three distinct “xi”]. On the other hand, this [together with the
birationality of κ†] implies that the closed point κ†(D†) of Yst

s intersects three
distinct irreducible components of Yst

s [i.e., the images of suitable irreducible
components of (f†)−1(xi) ⊆ Y†

s , for three distinct “i”], that is to say, in con-
tradiction to the definition of the notion of a compactified stable model [cf.
Definition 2.1, (iv)]. Thus, we conclude that there do not exist any such “D†”
[i.e., that map to a closed point of Yst

s , but dominate an irreducible component
of Xs], and hence, by Zariski’s Main Theorem, that the morphism f† : Y† → X
factors as the composite of κ† with a morphism f st : Yst → X . In particular,
it follows from the existence of the morphism f st : Yst → X that Yst

s contains
an irreducible component whose corresponding valuation induces the given val-
uation v on K(X), i.e., that X satisfies Σ-RNS. This completes the proof of
assertion (iii).

Next, we verify assertion (iv). In light of Proposition 2.3, (iii), after possibly
replacingK by a suitable finite extension field ofK, we may assume without loss
of generality that X is a compactified semistable model with split reduction of X
overOK . Write {v1, . . . , vN} for the set of discrete valuations onK(X) that arise
from the irreducible components of Xs. Then since X satisfies Σ-RNS, for each
positive integer i ≤ N , there exists a connected geometrically pro-Σ finite étale
Galois covering Yi → X such that vi coincides with the restriction of a discrete
valuation on the function field of Yi that arises from an irreducible component
of the special fiber of a compactified stable model of Yi. Write Y → X for
the composite covering of the connected geometrically pro-Σ finite étale Galois
coverings {Yi → X}1≤i≤N . Then it follows immediately from Zariski’s Main
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Theorem [cf. also [ExtFam], Theorem A] that, after possibly replacing K by a
suitable finite extension field of K, there exists a compactified stable model Y
of Y over OK that dominates X . This completes the proof of assertion (iv).

Assertion (v) and the necessity portion of assertion (vi) follow immediately
from Proposition 2.4, (iv), together with Proposition 2.3, (iv), (vi). Next, we

consider the sufficiency portion of assertion (vi). Let c ∈ VE(X̃) be an element

that corresponds [cf. Proposition 2.3, (v)] to a valuation v onK(X̃) that extends
a discrete residue-transcendental p-valuation on X. [Note that in this situation,
v itself is necessarily residue-transcendental.] Then it suffices to show that there
exists a “zc” as in the statement of Proposition 2.4, (vi), that is a generic point
of “Zst

s ”. To this end, we observe that the nonexistence of such a “zc” would
imply that all of the “zc” are closed points of “Zst

s ”, hence have residue fields
that are algebraic over the residue field of OK . On the other hand, this would
imply that the residue field of Rc = Ov is algebraic over the residue field of OK ,
in contradiction to the residue-transcendentality of v. This completes the proof
of assertion (vi).

Finally, we verify assertion (vii). The portion of assertion (vii) concerning

the existence of an element c ∈ VE(X̃)prim as in the statement of Proposition
2.4, (vii), follows from Proposition 2.3, (xi). To verify the portion of assertion

(vii) concerning the uniqueness of such an element c ∈ VE(X̃)prim, it suffices

to show the equality of any two elements c1, c2 ∈ VE(X̃)prim that satisfy the
condition imposed on element “c” in the statement of Proposition 2.4, (vii).

Write c′1, c
′
2 for the images of c1, c2 in VE(X̃)st,prim. Then it follows from

Proposition 2.4, (iv); [CbTpIV], Corollary 1.15, (iv) [applied to c′1, c
′
2], that

δ(c1, c2) < +∞, hence from Proposition 2.3, (ix), that c1 = c2, as desired. This
completes the proof of assertion (vii), hence of Proposition 2.4.

Corollary 2.5 (Constructions associated to geometric tempered fun-
damental groups). Let Σ ⊆ Primes be a subset of cardinality ≥ 2 such that
p ∈ Σ; K†, K‡ mixed characteristic complete discrete valuation fields of residue

characteristic p; X†, X‡ hyperbolic curves over K
†
, K

‡
, respectively. Write Ω†,

Ω‡ for the p-adic completions of K
†
, K

‡
, respectively. For any hyperbolic curve

Z over K
†
, K

‡
, Ω†, or Ω‡, write Πtp

Z for the Σ-tempered fundamental group
of Z, relative to a suitable choice of basepoint [cf. the subsection in Notations

and Conventions entitled “Fundamental groups”]. Write X̃† → X†, X̃‡ → X‡

for the universal geometrically pro-Σ coverings corresponding to Πtp
X† , Π

tp
X‡ , re-

spectively. Suppose that X† and X‡ satisfy Σ-RNS. Then the following hold [cf.
Remark 2.5.1 below]:

(i) Let σ : Πtp
X†

∼→ Πtp
X‡ be an isomorphism of topological groups. Then σ

induces homeomorphisms

VE(X̃†)
∼→ VE(X̃‡),
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VE(X̃†)tor
∼→ VE(X̃‡)tor,

VE(X̃†)prim
∼→ VE(X̃‡)prim,

that are compatible with the respective natural actions of Πtp
X† , Π

tp
X‡ . If,

moreover, X† and X‡ are proper, then σ induces a homeomorphism

(X̃†)an
∼→ (X̃‡)an

that is compatible with the respective natural actions of Πtp
X† , Π

tp
X‡ .

(ii) Suppose that K
def
= K† = K‡, K = K

†
= K

‡
, hence that Ω

def
= Ω† = Ω‡.

Let x† ∈ X†(Ω), x‡ ∈ X‡(Ω). Write X†
x† (respectively, X‡

x‡) for the

hyperbolic curve X†
Ω\{x†} (respectively, X

‡
Ω\{x‡}) over Ω. Let σ̃ : Πtp

X†
x†

∼→

Πtp

X‡
x‡

be an isomorphism of topological groups that fits into a commutative

diagram
Πtp

X†
x†

∼−−−−→
σ̃

Πtp

X‡
x‡y y

Πtp
X†

∼−−−−→
σ

Πtp
X‡ ,

where the vertical arrows are the natural surjections [determined up to
composition with an inner automorphism] induced by the natural open

immersions X†
x† ↪→ X†

Ω, X
‡
x‡ ↪→ X‡

Ω of hyperbolic curves; the lower hori-
zontal arrow σ is the isomorphism of topological groups [determined up to
composition with an inner automorphism] induced by a(n) [uniquely de-
termined — cf., e.g., [DM], Lemma 1.14] isomorphism σX : X† ∼→ X‡ of
schemes over K. Then x‡ = σX(x†).

Proof. First, we verify assertion (i). We begin by recalling that [SemiAn], Corol-
lary 3.11, may be generalized/applied to hyperbolic curves over an arbitrary
mixed characteristic complete discrete valuation field [cf. [AbsTopII], Remark
2.11.1, (i)]. Thus, by applying this generalized version of [SemiAn], Corollary

3.11, we conclude that σ induces a homeomorphism VE(X̃†)st
∼→ VE(X̃‡)st.

On the other hand, it follows from our assumption that X† and X‡ satisfy
Σ-RNS that we may apply the homeomorphisms “VE(X̃)

∼→ VE(X̃)st” and

“VE(X̃)tor
∼→ VE(X̃)st,tor” of Proposition 2.4, (v). In particular, we conclude

that σ induces a homeomorphism

VE(X̃†)tor
∼→ VE(X̃‡)tor

that is manifestly compatible with the respective natural actions of Πtp
X† , Π

tp
X‡ ,

as well as a homeomorphism

VE(X̃†)
∼→ VE(X̃‡)
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that is manifestly compatible with the respective natural actions of Πtp
X† , Π

tp
X‡

and preserves specialization/generization relations, hence induces a homeomor-
phism

VE(X̃†)prim
∼→ VE(X̃‡)prim

that is compatible with the respective natural actions of Πtp
X† , Π

tp
X‡ . Finally, if,

moreover, X† and X‡ are proper, then we may apply the homeomorphism “θX̃”
of Proposition 2.3, (viii), to conclude that σ induces a homeomorphism

(X̃†)an
∼→ (X̃‡)an

that is compatible with the respective natural actions of Πtp
X† , Π

tp
X‡ . This com-

pletes the proof of assertion (i).
Next, we verify assertion (ii). We begin by observing that it follows from

the generalized version of [SemiAn], Corollary 3.11, discussed above, together
with Corollary 2.5, (i), that σ̃ induces a bijection

VE(X̃†)
∼→ VE(X̃‡)

that maps the point-theoretic orbit-center-chain associated to x† to the point-
theoretic orbit-center-chain associated to x‡. Since σ arises from σX , we thus
conclude from the bijection “X(Ω)

∼→ VE(X̃)pt-th/Gal(X̃/XK)” of Proposition
2.3, (v), that σX(x†) = x‡. This completes the proof of assertion (ii), hence of
Corollary 2.5.

Remark 2.5.1. The homeomorphism “(X̃†)an
∼→ (X̃‡)an” of Corollary 2.5, (i),

is essentially similar to the homeomorphisms of [Lpg1], Theorem 3.10, but is
formulated and proven according to the approach of the present paper. On
the other hand, Corollary 2.5, (ii), may be regarded, when taken together with
Theorem 2.17 below, as a generalization of [Tsjm], Theorem 2.2; its proof may
be regarded as a more sophisticated version of the argument applied in the proof
of [Tsjm], Theorem 2.2.

Proposition 2.6 (Existence of new ordinary parts of certain cover-
ings after Raynaud-Tamagawa). Let l be a prime number ̸= p; K a mixed
characteristic complete discrete valuation field of residue characteristic p; X a
proper hyperbolic curve over K. Suppose that X has split stable reduction over
K. Write X st for the [unique, up to unique isomorphism] stable model of X
over OK . Suppose, moreover, that every irreducible component of the special
fiber of X st is a smooth curve of genus ≥ 2. Write eX (respectively, vX) for the
cardinality of the set of nodes (respectively, the set of irreducible components)
of the stable curve X st

s . Then:

(i) For each sufficiently large positive integer m, if we replace K by a finite
unramified extension field of K, then there exists a finite étale cyclic cov-
ering

Yst −→ X st

over OK of degree lm satisfying the following conditions:
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(a) Write (Yst →) Zst → X st for the finite étale cyclic subcovering over
OK of degree lm−1; Y , Z for the generic fibers of Yst, Zst, respec-
tively. Then Y and Z have split stable reduction over K. Moreover,
Yst, Zst are the stable models of Y , Z, respectively.

(b) The finite étale covering Yst
s → X st

s determined by the finite étale
cyclic covering Yst → X st induces a bijection between the respective
sets of irreducible components.

(c) Write A for the abelian variety over K obtained by forming the coker-
nel of the natural morphism J(Z)→ J(Y ) induced by the finite étale
cyclic covering Y → Z [of degree l]. Then there exists an abelian va-
riety B over K with good ordinary reduction such that TpA fits into
exact sequences of GK-modules [cf. the theory of [FC], especially,
[FC], Chapter III, Corollary 7.3]

0 −→ Tgd −→ TpA −→ Tcb −→ 0

0 −→ Ttor −→ Tgd −→ TpB −→ 0

0 −→ Hom(TpBs,Zp(1)) −→ TpB −→ TpBs −→ 0,

where “(1)” denotes the Tate twist; the natural action of GK on the
“combinatorial quotient” Tcb [i.e., the inverse limit of the quotients
“Y /nY ” of [FC], Chapter III, Corollary 7.3, as n ranges over the
positive integral powers of p] of TpA is trivial; Ttor is isomorphic as
a GK-module to the direct sum of a collection of copies of Zp(1); B
denotes the abelian scheme over OK whose generic fiber is equal to
B.

(ii) Fix a finite étale cyclic covering Yst → X st as in (i). Write

Tcb,Y , Tcb,Z

for the “combinatorial quotients” [i.e., the inverse limit of the quotients
“Y /nY ” of [FC], Chapter III, Corollary 7.3, as n ranges over the positive
integral powers of p] of TpJ(Y ), TpJ(Z), respectively; hY , hZ for the
respective loop-ranks of the dual graphs associated to the stable curves Yst

s ,
Zst

s . Then it holds that

hY = 1 + lmeX − vX , hZ = 1 + lm−1eX − vX .

Moreover,
rankZp Tcb,Y = hY ; rankZp Tcb,Z = hZ ;

rankZp
Ttor = rankZp

Tcb = hY − hZ = (lm − lm−1)eX .

Proof. First, we verify assertion (i). Write {Ci}1≤i≤vX for the set of irreducible
components of X st

s . Let m be a positive integer such that, for each positive
integer i ≤ vX , it holds that

lm >
l2gCi − l2gCi

−1

l2gCi − 1
(p− 1)gCi ,
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where g(−) denotes the genus of (−). Then, in light of [Tama1], Lemma 1.9
[i.e., a generalization of [Ray1], Théorème 4.3.1], by replacing K by a finite
unramified extension field of K, one may construct finite étale cyclic coverings
{Di → Ci}1≤i≤vX of degree lm [of proper hyperbolic curves over the residue
field of K] satisfying the following conditions:

• For each positive integer i ≤ vX , write (Di →) Ei → Ci for the finite
étale cyclic subcovering of degree lm−1 [of proper hyperbolic curves over
the residue field of K]. Then the abelian variety obtained by forming the
cokernel of the natural morphism J(Ei) → J(Di) induced by the finite
étale cyclic covering Di → Ei of degree l is ordinary.

• The cardinality of the set of closed points of Di that lie over the closed
points of Ci determined by the nodes of X st

s is equal to lm.

Next, one verifies immediately that there exists a finite étale cyclic covering
D → X st

s of degree lm obtained by gluing together the finite étale cyclic cov-
erings {Di → Ci}1≤i≤vX . Write Yst → X st for the finite étale cyclic covering
obtained by deforming the finite étale cyclic covering D → X st

s . Then it follows
immediately from the various definitions involved that conditions (a), (b) hold.
Moreover, in light of the theory of Raynaud extensions [cf. [FC], Chapter II,
§1; [FC], Chapter III, Corollary 7.3], together with Remark 2.6.1, (i), (ii), below
[cf. also [BLR], §9.2, Example 8], one concludes that condition (c) holds. This
completes the proof of assertion (i).

Next, we verify assertion (ii). Write eY , eZ for the respective cardinalities
of the sets of nodes of the stable curves Yst

s , Zst
s ; vY , vZ for the respective

cardinalities of the sets of irreducible components of the stable curves Yst
s , Zst

s .
Then it follows immediately from conditions (a), (b), that

eY = lmeX , eZ = lm−1eX , vY = vZ = vX .

Thus, we conclude from the well-known computation of the first homology group
of a finite graph that

hY = 1 + eY − vY = 1 + lmeX − vX , hZ = 1 + eZ − vZ = 1 + lm−1eX − vX .

Therefore, to complete the proof of assertion (ii), it suffices to prove that
rankZp

Tcb,Y = hY , rankZp
Tcb,Z = hZ , and rankZp

Ttor = rankZp
Tcb = hY−hZ .

Recall that the loop-ranks hY , hZ coincide with the toric ranks of the Jacobians
of the stable curves Yst

s , Zst
s , respectively [cf., e.g, [BLR], §9.2, Example 8]. On

the other hand, in light of the theory of duality for torsion subgroups of abelian
varieties, it holds that these toric ranks coincide with the ranks of the respective
corresponding combinatorial quotients [cf. [FC], Chapter III, Corollary 7.4]. In
particular, it follows immediately [cf. Remark 2.6.1, (ii), below; [FC], Chap-
ter III, Corollary 7.4] that rankZp

Tcb,Y = hY , rankZp
Tcb,Z = hZ , hence that

rankZp Ttor = rankZp Tcb = rankZp Tcb,Y − rankZp Tcb,Z = hY − hZ . This
completes the proof of assertion (ii), hence of Proposition 2.6.

58



Remark 2.6.1. We maintain the notation of Proposition 2.6.

(i) Write A for the identity component of the Néron model of A over OK [cf.
[BLR], §1.3, Corollary 2]. Then the universal property of the Néron model
implies the existence of a surjective homomorphism

f : Pic0Yst/OK
↠ A

that extends the natural quotient homomorphism J(Y ) ↠ A [cf. [BLR],
§1.2, Definition 1; [BLR], §9.4, Theorem 1]. Thus, since Pic0Yst/OK

is
a semi-abelian scheme over OK [cf. [BLR], §9.4, Theorem 1], it follows
immediately from the existence of the surjective homomorphism f that A
is also a semi-abelian scheme over OK .

(ii) Recall that the composite homomorphism J(Z) → J(Y ) → J(Z) of the
norm map J(Y ) → J(Z) with the natural homomorphism J(Z) → J(Y )
coincides with the morphism given by multiplication by l. In particular,
the abelian variety J(Y ) is isogenous overK to the product abelian variety
J(Z)×K A. Thus, we conclude from [BLR], §7.3, Proposition 6, that the
semi-abelian schemes Pic0Yst/OK

and Pic0Zst/OK
×OK

A over OK [cf. [BLR],
§9.4, Theorem 1] are isogenous over OK .

Definition 2.7. In the notation of Remark 2.6.1, let Z be a semistable model
of Z over OK that has split reduction. Note that Zst satisfies this property, and
that, by pulling-back the finite étale cyclic covering Yst → Zst via the unique
morphism Z → Zst that extends the identity morphism Z → Z [cf. [ExtFam],
Theorem A], we obtain a finite étale cyclic covering

Y −→ Z

over OK of degree l that extends the finite étale cyclic covering Y → Z over K.
Suppose that

• X st
s is a singular curve, and that

• m is sufficiently large that hY ≥ hZ ≥ 1 [cf. Proposition 2.6, (ii)].

(i) Let yη ∈ Y (K). Write zη ∈ Z(K) for the image of yη via the natural
map Y (K) → Z(K). Then yη and zη determine embeddings Y ↪→ J(Y ),
Z ↪→ J(Z) that allow one to regard J(Y ), J(Z) as the respective Albanese
varieties of Y , Z [cf. [AbsTopI], Appendix, Definition A.1, (ii); [Milne],
Proposition 6.1]. In particular, we obtain a commutative diagram

∆Y −−−−→ TpJ(Y ) −−−−→ Tcb,Yy y y
∆Z −−−−→ TpJ(Z) −−−−→ Tcb,Z ,
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where the left-hand vertical arrow denotes the open injection induced by
the finite étale cyclic covering Y → Z; the left-hand horizontal arrows
denote the natural surjections determined by the Albanese embeddings
Y ↪→ J(Y ), Z ↪→ J(Z) [cf. [AbsTopI], Appendix, Proposition A.6, (iv)];
the right-hand horizontal arrows denote the natural surjections; the mid-
dle and right-hand vertical arrows are surjections [cf. the fact that the
finite étale cyclic covering Y → Z is of degree l ̸= p]; the first square
of the diagram commutes in light of the functoriality of the étale funda-
mental group; the second square of the diagram commutes in light of the
functoriality of Raynaud extensions.

(ii) Fix a quotient
Tcb,Z ↠ Zp

[cf. our assumption that hZ ≥ 1; Proposition 2.6, (ii)]. For each nonneg-
ative integer n, write

Zn −→ Z

for the finite étale cyclic [“combinatorial”] covering of degree pn over OK

induced by the natural quotient

(∆Z ↠ TpJ(Z)↠) Tcb,Z ↠ Zp ↠ Z/pnZ;

Yn −→ Y

for the finite étale cyclic [“combinatorial”] covering of degree pn over OK

induced by the natural quotient

(∆Y ↠ TpJ(Y )↠) Tcb,Y ↠ Tcb,Z ↠ Zp ↠ Z/pnZ.

Thus, the commutative diagram in (i) induces a cartesian commutative
diagram

Yn −−−−→ Yy y
Zn −−−−→ Z,

where the vertical arrows are finite étale cyclic coverings of degree l over
OK ; the horizontal arrows are finite étale cyclic [“combinatorial”] cover-
ings of degree pn over OK . Moreover:

(a) Write Yn, Zn for the generic fibers of Yn, Zn, respectively. Then the
finite étale covering (Yn)s → (Zn)s determined by the finite étale
cyclic covering Yn → Zn induces a bijection between the sets of
irreducible components that arise from the respective stable models
of Yn and Zn [cf. Proposition 2.6, (i), (b)].

(b) Write An for the abelian variety over K obtained by forming the
cokernel of the natural morphism J(Zn) → J(Yn) induced by the
finite étale cyclic covering Yn → Zn of degree l [of proper hyperbolic
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curves over K]. Then there exists an abelian variety Bn over K with
good ordinary reduction such that TpAn fits into exact sequences of
GK-modules [cf. the theory of [FC], especially, [FC], Chapter III,
Corollary 7.3; the proof of Proposition 2.6, (i), (c)]

0 −→ Tgd,n −→ TpAn −→ Tcb,n −→ 0

0 −→ Ttor,n −→ Tgd,n −→ TpBn −→ 0

0 −→ Hom(Tp(Bn)s,Zp(1)) −→ TpBn −→ Tp(Bn)s −→ 0,

where “(1)” denotes the Tate twist; the natural action of GK on the
“combinatorial quotient” Tcb,n of TpAn is trivial; Ttor,n is isomorphic
as a GK-module to the direct sum of a collection of copies of Zp(1);
Bn denotes the abelian scheme over OK whose generic fiber is equal
to Bn.

(iii) Write
An

for the identity component of the Néron model of An over OK [cf. [BLR],
§1.3, Corollary 2]. Then the universal property of the Néron model implies
the existence of a surjective homomorphism

fn : Jn
def
= Pic0Yn/OK

↠ An

that extends the natural quotient homomorphism J(Yn)↠ An [cf. [BLR],
§1.2, Definition 1; [BLR], §9.4, Theorem 1]. Thus, since Jn = Pic0Yn/OK

is a semi-abelian scheme over OK [cf. [BLR], §9.4, Theorem 1], it follows
immediately from the existence of the surjective homomorphism fn that
An is also a semi-abelian scheme over OK [cf. Remark 2.6.1, (i)].

(iv) For each nonnegative integer n, write

hYn , hZn

for the loop-ranks of the dual graphs associated to the semistable curves
(Yn)s, (Zn)s, respectively;

gYn

for the [arithmetic] genus of the semistable model Yn over OK . Then a
similar argument to the argument applied in Remark 2.6.1, (ii), implies
that the semi-abelian schemes Pic0Yn/OK

and Pic0Zn/OK
×OK

An over OK

are isogenous over OK . In particular, we obtain equalities

rankZp
Ttor,n = rankZp

Tcb,n = hYn
− hZn

[cf. the proof of Proposition 2.6, (ii)].
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Proposition 2.8 (Explicit computations of toric rank and genus). We
maintain the notation of Definition 2.7. Then the following hold:

(i) It holds that

hYn
= 1 + pnlmeX − pnvX , hZn

= 1 + pnlm−1eX − pnvX ,

hence, in particular, that

rankZp
Ttor,n = rankZp

Tcb,n = hYn
− hZn

= pn(lm − lm−1)eX

[cf. the final display of Definition 2.7, (iv)].

(ii) It holds that
gYn = pn(gY0 − 1) + 1.

Proof. First, recall from the well-known theory of stable and semistable models
that hYn , hZn , rankZp Ttor,n, rankZp Tcb,n, and gYn are independent of the choice
of the semistable model Z of Z over OK . [Indeed, by passing to a suitable finite
unramified extension of K and adding finitely many suitably positioned cusps,
one may, in effect, reduce this “well-known theory of stable and semistable
models” to the theory of pointed stable curves and contraction morphisms that
arise from eliminating cusps, as exposed in [Knud].] In particular, we may
assume without loss of generality that Z is the stable model of Z over OK .
Assertion (i) then follows immediately from a similar argument to the argument
applied in the proof of Proposition 2.6, (ii). Assertion (ii) follows immediately
from Hurwitz’s formula. This completes the proof of Proposition 2.8.

Definition 2.9. We maintain the notation of Definition 2.7. Then we shall
write

T̂cnn,n

for the connected p-divisible group over OK that arises as the connected part
of the p-divisible group [cf. the discussion preceding [Tate], §2.2, Proposition 2]
associated to the Raynaud extension [cf. [FC], Chapter II, §1] of An;

T̂tor,n

for the connected p-divisible group over OK associated to the torus that appears
in the Raynaud extension of An;

T̃cnn,n, T̃tor,n

for the respective generic fibers of T̂cnn,n, T̂tor,n;

Tcnn,n
def
= Tp(T̃cnn,n), Ttor,n = Tp(T̃tor,n)
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for the respective p-adic Tate modules of T̃cnn,n, T̃tor,n [cf. the subsection in
Notations and Conventions entitled “Schemes”; Definition 2.7, (ii), (b)]. Note
that Tcnn,n and Ttor,n may be regarded as Zp-submodules of TpAn in a natural
way. Moreover, we shall write

Tét,n
def
= TpAn/Tcnn,n.

Note that GK acts naturally on the Zp-modules Tcnn,n, Ttor,n, Tét,n, and Tcb,n
[cf. Definition 2.7, (ii), (b)]. We shall write

Tcnn,n ↠ Tqtr,n

for the maximal torsion-free GK-stable quotient Zp-module among the torsion-
free GK-stable quotient Zp-modules Tcnn,n ↠ T such that some open subgroup
of GK acts on T via the p-adic cyclotomic character;

Tqcb,n ⊆ Tét,n

for the maximal GK-stable Zp-submodule among the GK-stable Zp-submodules
T ⊆ Tét,n such that some open subgroup of GK acts trivially on T . Finally, we
observe that [one verifies immediately that] we obtain natural exact sequences
of GK-modules [cf. Definition 2.7, (ii), (b)]

0 −→ Ttor,n −→ Tcnn,n −→ Hom(Tp(Bn)s,Zp(1)) −→ 0

0 −→ Tp(Bn)s −→ Tét,n −→ Tcb,n −→ 0

0 −→ Tcnn,n −→ TpAn −→ Tét,n −→ 0.

Lemma 2.10. We maintain the notation of Definition 2.9. Then:

(i) The natural action of GK on TpAn induces the trivial action of IK on
Tét,n.

(ii) There exist natural compatible GK-equivariant isomorphisms

Tét,n
∼→ Hom(Tcnn,n,Zp(1)), Tcb,n

∼→ Hom(Ttor,n,Zp(1)),

Tqcb,n
∼→ Hom(Tqtr,n,Zp(1)).

(iii) Suppose that K is a p-adic local field. Then the set of eigenvalues of the
Zp-linear automorphism of Tp(Bn)s induced by the Frobenius element of
GK/IK [cf. (i); the second exact sequence of Definition 2.9] does not
contain any roots of unity.
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Proof. First, we verify assertion (i). Recall that the quotient of a p-divisible
group by its connected part is étale [cf., e.g., the discussion preceding [Tate],
§2.2, Proposition 2]. Thus, we conclude [cf. the triviality of the action of GK

on Tcb,n observed in Definition 2.7, (ii), (b); the second exact sequence of the
final display of Definition 2.9] from [the second sentence of] [FC], Chapter III,
Corollary 7.3, that the natural action of IK on Tét,n is trivial, as desired. This
completes the proof of assertion (i). Assertion (ii) follows immediately from the
theory of duality for torsion subgroups of abelian varieties [cf. [FC], Chapter
III, Corollary 7.4], together with the first and second exact sequences of the final
display of Definition 2.9. Assertion (iii) follows immediately from the finiteness
of the set of rational points of (Bn)s over any finite extension field of the [finite!]
residue field of K. This completes the proof of Lemma 2.10.

Proposition 2.11 (Toral quotient of the connected part). In the notation
of Definition 2.9, write

χn : Tcnn,n ↠ Tqtr,n

for the natural surjection of GK-modules. Then the following hold:

(i) Suppose that the residue field of K is separably closed. Then

Tcnn,n = Tqtr,n ̸= {0}, Tqcb,n = Tét,n ̸= {0}.

(ii) Suppose that K is a p-adic local field. Then the restriction of χn to Ttor,n ⊆
Tcnn,n induces an injection Ttor,n ↪→ Tqtr,n with finite cokernel.

Proof. First, we verify assertion (i). Note that since the residue field of K is
separably closed, GK = IK . Thus, it follows immediately from Lemma 2.10,
(i), together with the various definitions involved, that Tqcb,n = Tét,n. On the
other hand, it follows immediately from Proposition 2.8, (i) [cf. also Proposition
2.6; Definition 2.7; the second exact sequence of the final display of Definition
2.9], that Tét,n ̸= {0}. Thus, we conclude from Lemma 2.10, (ii), that Tcnn,n =
Tqtr,n ̸= {0}. This completes the proof of assertion (i).

Next, we verify assertion (ii). Write N
def
= rankZp Tqtr,n. Note that, in

light of the maximality of Tqtr,n, it suffices to verify that there exists a unique
torsion-free GK-stable quotient Zp-module

Tcnn,n ↠ T

whose restriction to Ttor,n ⊆ Tcnn,n induces an injection Ttor,n ↪→ T with finite
cokernel, and that rankZp

T ≥ N . Let Qp be an algebraic closure of Qp equipped
with the trivial action of GK . Then observe that it follows from a routine
argument involving Galois descent from Qp to Qp that it suffices to verify that

there exists a unique GK-stable quotient Qp-vector space

Tcnn,n ⊗Zp
Qp −→ V
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whose restriction to Ttor,n ⊗Zp Qp ⊆ Tcnn,n ⊗Zp Qp induces an isomorphism

Ttor,n ⊗Zp Qp
∼→ V , and that dimQp

V ≥ N . Write k for the finite residue field

of the p-adic local field K [so GK/IK may be identified with the absolute Galois
group Gk of k]. Then, by applying Lemma 2.10, (i), (ii), we conclude that it
suffices to verify that there exists a uniqueGk-stableQp-subspace V

∗ ⊆ Tét,n⊗Zp

Qp whose composite with the natural surjection Tét,n ⊗Zp
Qp ↠ Tcb,n ⊗Zp

Qp

induces an isomorphism V ∗ ∼→ Tcb,n ⊗Zp
Qp, and that dimQp

V ∗ ≥ N . On the

other hand, in light of the eigenspace decomposition associated to the natural
action of the Frobenius element ∈ Gk, the existence and uniqueness of such a
subspace, together with the inequality dimQp

V ∗ ≥ N (= rankZp
Tqcb,n) [cf.

Lemma 2.10, (ii)], follows immediately from Lemma 2.10, (iii) [cf. also the
triviality of the action of GK on Tcb,n observed in Definition 2.7, (ii), (b)]. This
completes the proof of assertion (ii), hence of Proposition 2.11.

Proposition 2.12 (Construction of a certain morphism of formal schemes
to the quasi-toral quotient). In the notation of Proposition 2.11, let yn ∈
Yn(OK) be an OK-rational point that maps the closed point of Spec OK to a
smooth point (yn)s of the semistable curve (Yn)s. Write yn,η ∈ Yn(K) for the
K-valued point of Yn determined by yn ∈ Yn(OK); C ⊆ (Yn)s for the unique
irreducible component that contains (yn)s; F ⊆ Yn for the closed subset obtained
by forming the union of the irreducible components ̸= C of (Yn)s; Uyn ⊆ Yn for
the open subscheme obtained by forming the complement of F ⊆ Yn;

hn,η : Yn −→ J(Yn)

for the Albanese map that maps yn,η to the origin [cf. [AbsTopI], Appendix,
Definition A.1, (ii); [Milne], Proposition 6.1]. Recall that Jn is a semi-abelian
scheme over OK [cf. Definition 2.7, (iii)] whose generic fiber is J(Yn). In
particular, Jn is isomorphic to the identity component of the Néron model over
OK of J(Yn) [cf. [BLR], §7.4, Proposition 3]. Thus, since Uyn

is a connected
smooth scheme over OK whose generic fiber is Yn, the universal property of the
Néron model implies the existence of a unique morphism

hn : Uyn
−→ Jn

that extends hn,η. Next, write Ĵn, Ân for the formal completions at the origin of

the semi-abelian schemes Jn, An over OK ; ÔYn,yn
, ÔUyn ,yn

for the completions
at yn of OYn,(yn)s , OUyn ,(yn)s . Then the natural composite map

Spf ÔYn,yn
= Spf ÔUyn ,yn

−→ Ĵn −→ Ân

induced by hn and the surjective homomorphism fn : Jn ↠ An [cf. Definition
2.7, (iii)] determines a morphism of formal OK-schemes

Spf ÔYn,yn
−→ T̂cnn,n,
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where we regard the connected p-divisible group T̂cnn,n as a formal group over OK

[cf. [Tate], §2.2, Proposition 1]. In particular, by forming the composite with the
morphism of formal OK-schemes induced by χn [cf. [Tate], §2.2, Proposition 1;
[Tate], §4.2, Corollary 1], we obtain a morphism of formal OK-schemes

Spf ÔYn,yn
−→ T̂qtr,n,

where T̂qtr,n denotes the formal group over OK determined by the connected p-
divisible group associated to the GK-module Tqtr,n [cf. [Tate], §2.2, Proposition
1; [Tate], §4.2, Corollary 1].

Proof. Proposition 2.12 follows immediately from the various references quoted
in the statement of Proposition 2.12.

Proposition 2.13 (Coverings associated to characters). We maintain the
notation of Proposition 2.12. Then the following hold:

(i) Write Ĝm for the formal completion at the origin of the multiplicative

group scheme Gm over OK ; HomOK
(T̂qtr,n, Ĝm) for the Zp-module of

homomorphisms over OK from T̂qtr,n to Ĝm; HomGK
(Tqtr,n,Zp(1)) for

the Zp-module of GK-equivariant homomorphisms of Zp-modules Tqtr,n →
Zp(1). Then the natural homomorphism

HomOK
(T̂qtr,n, Ĝm) −→ HomGK

(Tqtr,n,Zp(1))

is bijective.

(ii) Let a be a positive integer; f ∈ HomOK
(T̂qtr,n, Ĝm). Consider the com-

posite
(Spf OK [[t]]

∼→) Spf ÔYn,yn
−→ Ĝm

[where t is an indeterminate, and we regard OK [[t]] as being equipped with
the t-adic topology] of the morphism in the final display of Proposition 2.12
with f . By a slight abuse of notation, we shall also write f ∈ OK [[t]]×

for the image of the canonical coordinate U of Ĝm via the homomorphism
of rings induced by the above composite morphism. Then the covering of
Spf OK [[t]] obtained by extracting a pa-th root of f is dominated by the
covering of Spf OK [[t]] obtained by restricting the covering determined by

multiplication by pa on Ân.

Proof. Assertion (i) follows immediately from [Tate], §2.2, Proposition 1; [Tate],
§4.2, Corollary 1. Assertion (ii) follows immediately from the various definitions
involved. This completes the proof of Proposition 2.13.
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Lemma 2.14. Let X be a smooth proper curve of genus gX over a field K; x ∈
X(K) a K-valued point of X; dx a nonnegative integer such that dx ≥ 2gX − 1.
Then the natural composite map

H0(X,ΩX) ↪→ ΩX,x ↠ ΩX,x/m
dx
x ΩX,x

is injective.

Proof. First, observe that since dx ≥ 2gX − 1 > 2gX − 2 [which implies that the
degree of the line bundle ΩX(−dx ·x) is negative], it follows thatH0(X,ΩX(−dx ·
x)) = 0. Thus, the desired injectivity follows immediately by applying the [left
exact] functor H0(X,−) to the short exact sequence

0 −→ ΩX(−dx) −→ ΩX −→ ΩX,x/m
dx
x ΩX,x −→ 0.

This completes the proof of Lemma 2.14.

Lemma 2.15. Let a, b be positive integers; K a p-adic local field of degree

dK
def
= [K : Qp] over Qp; W ⊆ K[T ]/(T b+1) a Qp-vector subspace of dimension

a. For each nonzero element

h =
∑

0≤i≤b

hiT
i ∈ K[T ]/(T b+1),

write ord(h) (≤ b) for the smallest integer i such that hi ̸= 0. Set ord(0)
def
= +∞.

Suppose that

W\{0} ⊆ F def
= {h ∈ K[T ]/(T b+1) | ord(h) = pj−1 for some nonnegative integer j}.

Then it holds that

a ≤ dK(logp(b+ 1) + 1)
(
≪ dK(b+ 1) = dimQp

K[T ]/(T b+1)
)
.

Proof. For each nonnegative integer j, write

Fj
def
= W ∩ {h ∈ K[T ]/(T b+1) | ord(h) ≥ pj − 1}

[so Fj is a Qp-vector space, and Fj+1 ⊆ Fj ]. Then it follows immediately from
our assumption that W \ {0} ⊆ F that for each nonnegative integer j,

dimQp(Fj/Fj+1) ≤ dimQp(K) = dK .

On the other hand, since Fj = {0} for any nonnegative integer j such that
pj > pj − 1 ≥ b+ 1, we thus conclude that

a = dimQp
(W ) =

+∞∑
j=0

dimQp
(Fj/Fj+1) ≤ dK(logp(b+ 1) + 1),

as desired. This completes the proof of Lemma 2.15.
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Theorem 2.16 (Existence of suitable coverings). In the notation of Propo-
sition 2.13, suppose further that K is a p-adic local field. Then there exists a

real number CgY ,dK
that depends only on gY

def
= gY0

and dK
def
= [K : Qp] such

that for any positive integer n ≥ CgY ,dK
, after possibly replacing K by a finite

extension field of K, there exist

• a [connected] finite étale Galois covering Wn → Yn of proper hyperbolic
curves over K of degree a power of p,

• a semistable model Wn of Wn over OK ,

• a morphism ψ : Wn → Yn of semistable models over OK that restricts to
the finite étale Galois covering Wn → Yn,

• an irreducible component D of (Wn)s whose normalization is of genus ≥ 1

such that ψ(D) = (yn)s ∈ (Yn)s.

Proof. Fix a positive integer n. First, we consider the natural homomorphisms
of Zp-modules(

HomGK
(Tqtr,n,Zp(1))

∼←
)
HomOK

(T̂qtr,n, Ĝm) ↪→ H0
inv(T̂qtr,n,ΩT̂qtr,n

)

↪→ H0
inv(T̂cnn,n,ΩT̂cnn,n

)

∼← H0(An,ΩAn
)

↪→ H0(Uyn ,ΩYn)

↪→ ΩYn,yn
⊗OYn,yn

ÔYn,yn

→ ΩYn,yn,η
/m

2gYn
yn,η ΩYn,yn,η( ∼→ K[t]/(t2gYn ) dt

)
,

where

• the first arrow denotes the natural bijective homomorphism of Proposition
2.13, (i);

• “H0
inv(−)” denotes the OK-submodule of “H0(−)” that consists of the

invariant differentials on the p-divisible group in the first argument of
“H0(−)”;

• the second arrow denotes the injection obtained by pulling back the in-

variant differential d log(U)
def
= dU

U on Ĝm;

• the third arrow denotes the injection induced by χn [cf. Proposition 2.11;
[Tate], §2.2, Proposition 1; [Tate], §4.2, Corollary 1];

• the fourth arrow denotes the natural isomorphism;
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• the fifth arrow denotes the homomorphism of OK-modules obtained by
pulling back the differentials via the composite map Uyn ↪→ Jn ↠ An

that maps yn to the origin [cf. Definition 2.7, (ii), (b); Definition 2.7, (iii);
Proposition 2.12];

• the sixth arrow denotes the natural injection;

• the seventh arrow denotes the natural restriction morphism;

• myn,η
denotes the maximal ideal of OYn,yn,η

;

• the final arrow denotes the natural isomorphism determined by choosing
a “local coordinate” t, i.e., an element of the maximal ideal mYn,yn

of
OYn,yn such that t and mK generate mYn,yn .

Write
Ψ : HomOK

(T̂qtr,n, Ĝm) −→ OK [[t]]×

for the assignment discussed in Proposition 2.13, (ii) [i.e., relative to the local
coordinate t chosen above];

Ξ : HomOK
(T̂qtr,n, Ĝm) ↪→ ΩYn,yn,η

/m
2gYn
yn,η ΩYn,yn,η

( ∼→ K[t]/(t2gYn ) dt
)

for the injective [by Lemma 2.14] composite of the second to the seventh arrows
in the first display of the present proof. Thus, Ξ may be understood as the
result of composing Ψ with the operation of taking the logarithmic derivative
with respect to t and then truncating the terms of degree ≥ 2gYn .

Observe that so far we have not applied the assumption that K is a p-adic
local field. Now we proceed to apply this assumption. Recall from Proposition
2.8, (i), (ii); Proposition 2.11, (ii) [cf. also the initial portions of Proposition 2.6
and Definition 2.7], that

rankZp
Tqtr,n = rankZp

Ttor,n = pn(lm − lm−1)eX ;

2gYn
= 2(pn(gY0

− 1) + 1),

where eX ≥ 1. Thus, one verifies immediately that there exists a real number
CgY ,dK

that depends only on gY = gY0 and dK = [K : Qp] such that for any
positive integer n ≥ CgY ,dK

, it holds that

pn(lm − lm−1)eX > dK(logp(2(p
n(gY0 − 1) + 1)) + 1).

In particular, we conclude from Lemma 2.15 that there exists a homomorphism
f ∈ HomOK

(T̂qtr,n, Ĝm) such that Ξ(f) ̸= 0, and ord(Ξ(f)) + 1 is not a [non-
negative integral] power of p. Fix such a homomorphism f . Then note that it
follows from our choice of f that we may write

Ψ(f) = 1 +
∑
i≥1

ait
i ∈ OK [[t]]×
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[cf. Proposition 2.13, (ii)], where, if we write i0 for the smallest positive integer
i such that ai ̸= 0, then i0 is not a [nonnegative integral] power of p.

In the following, we shall apply Proposition 1.6, where we take “g(t)” to be
Ψ(f) and apply the isomorphism of topological OK-algebras

OK [[t]]
∼→ ÔYn,yn

determined by t, to complete the proof of Theorem 2.16. Write N
def
= µ + 1,

where µ is the “µ” that results from applying Proposition 1.6, (i);

ψη :Wn −→ Yn

for the [connected] finite étale Galois covering over K obtained by pulling-back
the morphism induced by multiplication by pN on An via the composite mor-
phism Yn ↪→ Uyn

→ Jn ↠ An [cf. Proposition 2.12].
Next, let us observe that it follows immediately from the various definitions

of the morphisms involved that the composite morphism

ϕ̂c1 ◦ λh ◦ τ ◦ ϕc2 |Uc2
: Uc2 → Spec OK [[t]]

[cf. the two commutative diagrams of Proposition 1.6, (i)], together with the

isomorphism OK [[t]]
∼→ ÔYn,yn , allow one to regard the p-adic completion R̂Y

of the localization of Γ(Uc2 ,OUc2
) at the generic point of (Uc2)s as the p-adic

completion of the ring of integers RY of a certain discrete residue-transcendental
p-valuation on the function field of Yn. Write RW/Y for the normalization of RY

in the function field of Wn. Thus, since RY is [a localization of a ring of finite
type over the complete discrete valuation ring OK , hence] excellent, it follows
that RW/Y is finite over RY .

Next, let us observe that it follows from the relations

ι ◦ λg ◦ ϕ̂c1 ◦ λh = (pµ) ◦ ξg,

ξg ◦ τ ◦ (ϕc2 |Uc2
) = ι ◦ (ϕπp |Uπp ) ◦ θg,

ι ◦ (ϕπp |Uπp ) ◦ θg ◦ fY = (p) ◦ ι ◦ (ϕπ|Uπ
) ◦ θY

in the first and second commutative diagrams of Proposition 1.6, (i), and the
commutative diagram of Remark 1.6.1 that we obtain relations

ι ◦ λg ◦ ϕ̂c1 ◦ λh ◦ τ ◦ (ϕc2 |Uc2
) ◦ fY = (pµ) ◦ ξg ◦ τ ◦ (ϕc2 |Uc2

) ◦ fY
= (pµ) ◦ ι ◦ (ϕπp |Uπp ) ◦ θg ◦ fY
= (pµ) ◦ (p) ◦ ι ◦ (ϕπ|Uπ ) ◦ θY ,

where
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• the composite of the first and second equalities implies that, after possi-
bly replacing K by a finite extension field of K [which in fact may be

taken to be unramified — cf. Lemma 2.10, (i)], the tautological (R̂Y )K-

valued point yR of Yn, where we write (R̂Y )K
def
= R̂Y ⊗OK

K, lifts to an

(R̂Y )K-valued point y∗R of a certain intermediate covering Wn → Y ∗
n of

Wn → Yn that corresponds to multiplication by pµ on the codomain of
the homomorphism f ∈ HomOK

(T̂qtr,n, Ĝm), while

• the third equality implies [cf. also the “essentially cartesian” nature of
the squares in the commutative diagram of Remark 1.6.1] that y∗R lifts

to an (R̂W )K-valued point wR of Wn, where (R̂W )K
def
= R̂W ⊗OK

K, and

R̂W denotes the p-adic completion of some localization RW of RW/Y at a

maximal ideal of RW/Y such that, if we write R̂W † ⊆ R̂W for the subring

[over which R̂W is finite] determined by a certain intermediate covering of
Wn → Yn [that corresponds to multiplication by pN on the codomain of

the homomorphism f ∈ HomOK
(T̂qtr,n, Ĝm)], then the spectrum of R̂W †

admits a tautological isomorphism over R̂Y to the spectrum of the p-adic
completion of the localization of “Γ(Y,OY )” at the generic point of “Ys”
[i.e., where the quotation marks refer to the notation of Proposition 1.6,
(ii)].

In particular, since i0 is not a [nonnegative integral] power of p, it follows from

Proposition 1.6, (ii), and Remark 1.6.2 that the residue field of R̂W , hence also
the residue field of RW , is the function field of a curve over the residue field of
OK of genus ≥ 1. Thus, we conclude from Proposition 2.3, (ii), (iii), that, after
possibly replacing K by a finite extension field of K, there exist a compactified
semistable model Wn of Wn over OK , together with a dominant morphism

ψ :Wn −→ Yn

over OK , such that

• ψ restricts to the finite étale Galois covering ψη :Wn → Yn;

• RW is the local ring ofWn at the generic point of an irreducible component
D of (Wn)s whose normalization is of genus ≥ 1;

• ψ(D) = (yn)s ∈ (Yn)s.

This completes the proof of Theorem 2.16.

Theorem 2.17 (Resolution of nonsingularities for arbitrary hyperbolic
curves over p-adic local fields). Let Σ ⊆ Primes be a subset of cardinality
≥ 2; K a p-adic local field, for some p ∈ Σ; X a hyperbolic curve over K; L a
mixed characteristic complete discrete valuation field of residue characteristic p
that contains K as a topological subfield. Then XL satisfies Σ-RNS if and only
if the residue field of L is algebraic over the finite field of cardinality p.
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Proof. First, we observe that it follows formally from Remark 2.2.3, (v), that
it suffices to verify that X satisfies Σ-RNS. Next, we observe that it follows
immediately from the various definitions involved that we may assume without
loss of generality that X has stable reduction over K. Write X for the [unique,
up to unique isomorphism] compactified stable model of X over OK . Then,
in light of Propositions 2.3, (xii); 2.4, (i), (ii), by replacing X by the [unique,
up to unique isomorphism] smooth compactification of a suitable connected
geometrically pro-Σ finite étale covering of X, we may assume without loss of
generality that:

• X is a proper hyperbolic curve over K,

• Xs is split,

• Xs is singular, and

• every irreducible component of Xs is a smooth curve of genus ≥ 2.

In particular, X now satisfies the assumptions imposed in the respective initial
portions of Proposition 2.6 and Definition 2.7. Next, observe that since the
covering Yn → Y is combinatorial [cf. Definition 2.7, (ii)], it follows immediately
that this covering induces a surjection Yn(K) ↠ Y (K) on K-rational points.
Thus, it follows immediately from Proposition 2.4, (iii), and Theorem 2.16 that
X satisfies Σ-RNS. This completes the proof of Theorem 2.17.

3 Point-theoreticity, metric-admissibility, and arith-
metic cuspidalization

Let p be a prime number. In the present section, we first recall the well-
known classification of the points of the topological Berkovich space associated
to a proper hyperbolic curve over a mixed characteristic complete discrete val-
uation field via the notion of type i points, where i ∈ {1, 2, 3, 4} [cf. Defi-
nition 3.1]. Next, we introduce a certain combinatorial classification of the
VE-chains considered in §2 [cf. Definition 3.2] and observe that this classifica-
tion of VE-chains leads naturally to a purely combinatorial characterization of
the well-known classification via type i points mentioned above [cf. Proposi-
tions 3.3, 3.4]. This combinatorial classification/characterization [cf. also the
approach of Propositions 3.7, 3.8] was motivated by the argument applied in
the proof of [CbTpIV], Theorem A.7. We then apply the theory of §2 to give
a group-theoretic characterization, motivated by [but by no means identical to]
the characterization of [Lpg2], §4, of the type i points in terms of the geometric
Σ-tempered fundamental group of the hyperbolic curve [cf. Propositions 3.5,
3.9]. Then, by combining this group-theoretic characterization with [AbsTopII],
Corollary 2.9, we prove an absolute version of the Grothendieck Conjecture for
hyperbolic curves over p-adic local fields [cf. Theorem 3.12]. This settles one of
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the major open questions in anabelian geometry. As a corollary of this absolute
version of the Grothendieck Conjecture for hyperbolic curves over p-adic local
fields, together with [HMM], Theorem A, we also obtain an absolute version
of the Grothendieck Conjecture for configuration spaces associated to hyper-
bolic curves over p-adic local fields [cf. Theorem 3.13]. We then switch gears
to discuss metric-admissibility for p-adic hyperbolic curves. This discussion of
metric-admissibility leads to a proof that all of the various p-adic versions of
the Grothendieck-Teichmüller group that appear in the literature in fact coin-
cide [cf. Theorem 3.16]. Moreover, as an application of Corollary 2.5, (i), and
the theory developed in the present section, together with the theory of metric-
admissibility developed in [CbTpIII], §3, we obtain a construction of a certain
type of arithmetic cuspidalization of the [Primes-] tempered fundamental group
of a hyperbolic curve over Qp [cf. Theorem 3.20].

Definition 3.1. Let Σ ⊆ Primes be a nonempty subset; K a mixed charac-
teristic complete discrete valuation field of residue characteristic p; X a proper
hyperbolic curve over K; X̃ → X a universal geometrically pro-Σ covering of X.
Write Ω for the p-adic completion of [some fixed] K; (−)an for the topological

Berkovich space associated to (−). Let x ∈ Xan be an element; x̃ ∈ X̃an [cf.
Proposition 2.3, (vii), (viii)] a lifting of x. Then:

(i) We shall say that x̃ is of type 1 if x̃ is determined by a point-theoretic

p-valuation on the function field K(X̃) of X̃ associated to some point

∈ X̃(Ω) [cf. Definition 2.2, (ii)].

(ii) We shall say that x̃ is of type 2 if x̃ is determined by an inverse system
of discrete residue-transcendental p-valuations associated to irreducible
components of the special fibers of [compactified] semistable models with
split reduction of the domain curves of connected finite étale coverings
Z → X equipped with a factorization X̃ → Z → X [cf. Proposition 2.3,
(ii), (iii)].

(iii) We shall say that x̃ is of type 3 if there exist a finite extension field L of
K, a [compactified] semistable model with split reduction X of XL over
OL, and a node e of Xs such that x̃ arises as the inverse image of a lifting
∈ VE(X̃)tor of some element ∈ De ⊆ VE(X )tor [cf. Definition 2.2, (vi)]

via the homeomorphism X̃an ∼→ VE(X̃)tor [cf. Proposition 2.3, (viii)].

(iv) We shall say that x̃ is of type 4 if, for each i ∈ {1, 2, 3}, x̃ is not of type i.

(v) For each i ∈ {1, 2, 3, 4}, we shall say that x is of type i if x̃ is of type
i. [One verifies immediately that, for each i ∈ {1, 2, 3, 4}, the condition
that x is of type i is independent of the choices of Σ and x̃.] For each

i ∈ {1, 2, 3, 4}, we shall write Xan[i] ⊆ Xan (respectively, X̃an[i] ⊆ X̃an)

for the subset of points of type i of Xan (respectively, X̃an).
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Remark 3.1.1. In the notation of Definition 3.1, we observe that

X̃an = X̃an[1] ∪ X̃an[2] ∪ X̃an[3] ∪ X̃an[4];

Xan = Xan[1] ∪ Xan[2] ∪ Xan[3] ∪ Xan[4],

and, moreover, for each pair of distinct i, j ∈ {1, 2, 3, 4},

X̃an[i] ∩ X̃an[j] = ∅; Xan[i] ∩ Xan[j] = ∅.

Indeed, it suffices to verify that X̃an[i] ∩ X̃an[j] = ∅. First, by considering
the residue fields of the valuation rings under consideration, we conclude that
X̃an[1] ∩ X̃an[2] = ∅. Next, we observe that it follows immediately from the
discussion of the construction of “VE(Z)tor” in Definition 2.2, (vi), that, for

each i ∈ {1, 2}, X̃an[i] ∩ X̃an[3] = ∅. Finally, we observe that it is a tautology

that, for each i ∈ {1, 2, 3}, X̃an[i] ∩ X̃an[4] = ∅. This completes the proof of
relations in the above display.

Definition 3.2. We maintain the notation of Definition 3.1. Let c = (cZ)Z∈S ∈
VE(X̃), where S denotes the directed set of [compactified] semistable models

that appear in the definition of VE(X̃) [cf. Definition 2.2, (iii)]. Write Vc ⊆ S
(respectively, Ec ⊆ S) for the subset of [compactified] semistable models Z such
that cZ is a vertex (respectively, an edge). Then:

(i) We shall say that c is asymptotically verticial (respectively, asymptotically
edge-like) if the subset Vc ⊆ S (respectively, Ec ⊆ S) forms a cofinal
subset of S. [In particular, if c is asymptotically verticial (respectively,
asymptotically edge-like), then Vc (respectively, Ec) may be regarded as a
directed set in a natural way.]

(ii) Suppose that c is asymptotically verticial. Then we shall say that c is
strongly verticial if there exists a cofinal subset Sc ⊆ Vc satisfying the
following condition:

Let Z1,Z2 ∈ Sc be distinct elements such that Z2 dominates
Z1. Then the generic point of the irreducible component of
(Z2)s that corresponds to cZ2

maps to the generic point of the
irreducible component of (Z1)s that corresponds to cZ1

via the
dominant morphism Z2 → Z1.

(iii) Suppose that c is asymptotically verticial. Then we shall say that c is
weakly verticial if there exists a cofinal subset Sc ⊆ Vc satisfying the
following condition:

Let Z1,Z2 ∈ Sc be distinct elements such that Z2 dominates
Z1. Then the generic point of the irreducible component of
(Z2)s that corresponds to cZ2 maps to a closed point in the
interior of the irreducible component of (Z1)s that corresponds
to cZ1

via the dominant morphism Z2 → Z1.
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(iv) Suppose that c is asymptotically edge-like. Then we shall say that c is
weakly edge-like if there exists a cofinal subset Sc ⊆ Ec satisfying the
following condition:

Let Z1,Z2 ∈ Sc be distinct elements such that Z2 dominates
Z1. Then there exists a toral compactified semistable model
Z∗

1 relative to Z1 such that the dominant morphism Z2 → Z1

admits a factorization Z2 → Z∗
1 → Z1, and the node of (Z2)s

that corresponds to cZ2
maps to a closed point in the interior

of an irreducible component of (Z∗
1 )s [that necessarily lies over

the node of (Z1)s that corresponds to cZ1
] via the dominant

morphism Z2 → Z∗
1 .

(v) Suppose that c is asymptotically edge-like. Then we shall say that c is
strongly edge-like if there exists a cofinal subset Sc ⊆ Ec satisfying the
following condition:

Let Z1,Z2 ∈ Sc be distinct elements such that Z2 dominates Z1.
Then, for each toral compactified semistable model Z∗

1 relative
to Z1 that admits a factorization Z2 → Z∗

1 → Z1, the node of
(Z2)s that corresponds to cZ2 maps to a node of (Z∗

1 )s [that
necessarily lies over the node of (Z1)s that corresponds to cZ1

]
via the dominant morphism Z2 → Z∗

1 .

(vi) We shall write

VE(X̃)vtc ⊆ VE(X̃); VE(X̃)edg ⊆ VE(X̃);

VE(X̃)str-vtc ⊆ VE(X̃); VE(X̃)wk-vtc ⊆ VE(X̃);

VE(X̃)str-edg ⊆ VE(X̃); VE(X̃)wk-edg ⊆ VE(X̃),

respectively, for the subsets of asymptotically verticial VE-chains, asymp-
totically edge-like VE-chains, strongly verticial VE-chains, weakly verti-
cial VE-chains, strongly edge-like VE-chains, and weakly edge-like VE-
chains. Also, for each □ ∈ {vtc, edg, str-vtc,wk-vtc, str-edg,wk-edg}, we
shall write

VE(X̃)prim,□ def
= VE(X̃)prim ∩ VE(X̃)□ (⊆ VE(X̃)).

(vii) Let Z ∈ S. Then in the notation of Definition 2.2, (vi), we shall write

VE(Z)tor,rat def
=

∪
w∈V(Z)

Vw (⊆ VE(Z)tor);

VE(Z)tor,irr def
=

∪
e∈E(Z)

De (⊆ VE(Z)tor).
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Note that one verifies immediately that

VE(Z)tor = VE(Z)tor,rat
⨿

VE(Z)tor,irr,

and that, for any Z1,Z2 ∈ S such that Z2 dominates Z1, the natural map
VE(Z2)

tor → VE(Z1)
tor induces a map

VE(Z2)
tor,rat → VE(Z1)

tor,rat

[cf. the discussion of Definition 2.2, (vi)].

Remark 3.2.1. In the notation of Definition 3.2, we observe that it follows im-
mediately from the various definitions involved [cf. also Remarks 2.1.4, 2.1.5;
Definition 2.2, (vi)] that:

VE(X̃)str-vtc ∩ VE(X̃)wk-vtc = ∅; VE(X̃)str-edg ∩ VE(X̃)wk-edg = ∅;

VE(X̃)vtc = VE(X̃)str-vtc ∪ VE(X̃)wk-vtc;

VE(X̃)edg = VE(X̃)str-edg ∪ VE(X̃)wk-edg;

VE(X̃) = VE(X̃)vtc ∪ VE(X̃)edg.

Proposition 3.3 (Elementary properties of the combinatorial classifi-
cation of VE-chains). In the notation of Definition 3.2, by forming the in-
ductive limit of the natural log structures on the [compactified] semistable models
Z ∈ S, we obtain an ind-log structure on the pro-scheme lim←−Z∈S

Z. Then the

following hold:

(i) Let c ∈ VE(X̃). Write z̃c for the center on lim←−Z∈S
Z of the valuation

ring Rc associated to c [cf. Proposition 2.3, (vi)]; Mpf
c for the perfection

of the inductive limit monoid obtained by forming the stalk at z̃c of the
characteristic of the ind-log structure on the pro-scheme lim←−Z∈S

Z. Then,

if c ∈ VE(X̃)vtc (respectively, c ∈ VE(X̃)str-edg), then Mpf
c is isomorphic

to Q≥0 (respectively, Q≥0 ×Q≥0).

(ii) The following relations hold:

VE(X̃)str-vtc ∩ VE(X̃)str-edg = ∅; VE(X̃)wk-vtc ∩ VE(X̃)str-edg = ∅;

VE(X̃)str-vtc ∩ VE(X̃)wk-vtc = ∅; VE(X̃)wk-edg ⊆ VE(X̃)wk-vtc;

VE(X̃) = VE(X̃)str-vtc ∪ VE(X̃)wk-vtc ∪ VE(X̃)str-edg.
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Proof. Assertion (i) follows immediately from the well-known log structure of
Mpf

c [cf. also the discussion of the subsection in Notations and Conventions en-
titled “Log schemes”], together with the various definitions involved. Assertion
(ii) follows immediately from assertion (i), together with the various defini-
tions involved [cf. also Remark 3.2.1]. This completes the proof of Proposition
3.3.

Proposition 3.4 (Characterization of points of type 2 and 3 via the
combinatorial classification of VE-chains). We maintain the notation of
Definition 3.2. Then the following hold:

(i) Write VE(X̃)nonprim
def
= VE(X̃) \ VE(X̃)prim. Then

VE(X̃)str-edg = VE(X̃)nonprim ∪ VE(X̃)prim,str-edg.

Moreover, the unique nontrivial generization of a nonprimitive VE-chain
[cf. Proposition 2.3, (x)] is strongly verticial.

(ii) For Z ∈ S, write

τ str-edg
X̃,Z

: VE(X̃)str-edg ⊆ VE(X̃)
τ
X̃−→ VE(X̃)tor −→ VE(Z)tor

for the natural composite map [cf. Proposition 2.3, (viii)]. Then for any

Z ∈ S, τ str-edg
X̃,Z

induces a map

VE(X̃)nonprim → VE(Z)tor,rat

[cf. (i)]. Moreover, for each c ∈ VE(X̃)prim,str-edg, there exists an element
Zc ∈ S such that for every Z ∈ S that dominates Zc,

τ str-edg
X̃,Z

(c) ∈ VE(Z)tor,irr

[cf. (i)]. Finally, Zc ∈ S may be taken to be a [compactified] semistable
model with split reduction of XL over OL for some finite extension field
L of K.

(iii) The bijection VE(X̃)prim
∼→ X̃an [cf. Proposition 2.3, (viii)] determines

bijections

VE(X̃)prim,str-vtc ∼→ X̃an[2]; VE(X̃)prim,str-edg ∼→ X̃an[3].

(iv) Let Y be a proper hyperbolic curve over K; f : Y → X a dominant

morphism over K; y ∈ Y an. Write x
def
= f(y) ∈ Xan. Then, for each

i ∈ {1, 2, 3, 4}, y is of type i if and only if x is of type i.
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Proof. Assertion (i) follows immediately from the various definitions involved.

Next, we verify assertion (ii). Let c ∈ VE(X̃)str-edg. First, suppose that

c ∈ VE(X̃)nonprim. Write c′ ∈ VE(X̃)prim,str-vtc for the unique nontrivial gener-
ization of c [cf. assertion (i)]. Then it follows immediately from the definition of
τX̃ in the proof of Proposition 2.3, (viii), that τX̃(c) = τX̃(c′). In particular, it

follows immediately from the fact that c′ ∈ VE(X̃)prim,str-vtc that τX̃(c′) maps to

an element of VE(Z)tor,rat for any Z ∈ S, hence that τ str-edg
X̃,Z

(c) ∈ VE(Z)tor,rat,

as desired. Next, suppose that c ∈ VE(X̃)prim,str-edg. Let Zc ∈ Sc for some
“Sc” as in Definition 3.2, (v). Let Z ∈ S be an element that dominates Zc.
Then one verifies immediately [cf. also the final portion of Definition 3.2, (vii)]

that any relation τ str-edg
X̃

(c) ∈ VE(Z)tor,rat implies a contradiction to the condi-

tion of Definition 3.2, (v). Thus, we conclude that τ str-edg
X̃,Z

(c) ∈ VE(Z)tor,irr, as
desired. The fact that Zc ∈ S may be taken to be a [compactified] semistable
model with split reduction of XL over OL for some finite extension field L of K
follows immediately from Proposition 2.3, (iii), (iv). This completes the proof
of assertion (ii). Assertion (iii) follows immediately from assertion (ii), together
with the various definitions involved [cf. also the final portion of Definition 3.2,
(vii); Proposition 3.3, (ii)]. Finally, we consider assertion (iv). First, we observe
that the asserted equivalence follows immediately from the various definitions
involved [cf. also Proposition 2.3, (ii), (iii), in the case where i = 2] when
i ∈ {1, 2}. Thus, it suffices to verify the asserted equivalence when i = 3. When
i = 3, sufficiency follows immediately, in light of assertion (iii) and Proposition
3.3, (ii), from Definition 3.1, (iii) [cf. also the discussion of Definition 2.2, (vi)].
On the other hand, it follows immediately, by replacing Y by the normalization
of Y in the Galois closure of the finite extension of function fields determined
by f and applying the sufficiency that has already been verified, that to verify
necessity when i = 3, we may assume without loss of generality that the finite
extension of function fields determined by f is Galois. But then the desired
necessity follows immediately from the final portion of assertion (ii), together
with Proposition 2.3, (iii), (iv) [cf. also the discussion of Definition 2.2, (vi)].
This completes the proof of Proposition 3.4.

Proposition 3.5 (Types of points and geometrically pro-l decomposi-
tion groups). In the notation of Definition 3.2, let l ∈ Σ \ {p}. Suppose that
X satisfies Σ-RNS. Then the following hold:

(i) Let

c ∈ VE(X̃)str-vtc (respectively, c ∈ VE(X̃)wk-vtc; c ∈ VE(X̃)str-edg).

For each connected geometrically pro-Σ finite étale covering (X̃ →) Z →
X, write DZ,c ⊆ ∆l

Z
def
= ∆

{l}
Z for the decomposition subgroup associated

to c of the geometric pro-l fundamental group of Z [cf. the subsection in
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Notations and Conventions entitled “Fundamental groups”]. Then there

exists a connected geometrically pro-Σ finite étale covering (X̃ →) Y → X
of X such that, for each connected geometrically pro-Σ finite étale covering
(X̃ →) Z → Y of Y , DZ,c is isomorphic to a [nonabelian] pro-l surface
group [cf. [MT], Definition 1.2] (respectively, the trivial group; Zl).

(ii) Let i ∈ {2, 3}. Then the set X̃an and the subset X̃an[i] ⊆ X̃an may
be reconstructed, functorially with respect to isomorphisms of topological
groups, from the underlying topological group of the geometric Σ-tempered
fundamental group of X [cf. the subsection in Notations and Conventions
entitled “Fundamental groups”].

(iii) Let Y , Z be [not necessarily proper!] hyperbolic curves over K that satisfy

Σ-RNS; Ỹ → Y , Z̃ → Z universal geometrically pro-Σ coverings of Y , Z,
respectively; f : Y → Z a dominant morphism over K; H ⊆ GK a closed
subgroup such that the restriction to H of the l-adic cyclotomic charac-
ter of K has open image, and, moreover, the intersection H∩IK of H with
the inertia subgroup IK of GK admits a surjection to [the profinite group]

Zl; sY : H → Π
(Σ)
Y

def
= Gal(Ỹ /Y ), sZ : H → Π

(Σ)
Z

def
= Gal(X̃/X) sections

of the restrictions to H of the respective natural surjections Π
(Σ)
Y ↠ GK ,

Π
(Σ)
Z ↠ GK such that sY is mapped, up to Π

(Σ)
Z -conjugation, by f to

sZ via the map induced by f on geometrically pro-Σ fundamental groups.
Write ΩH ⊆ Ω for the subfield of Ω fixed by H. Then sY arises from a(n)
[necessarily unique] ΩH-rational point ∈ Y (ΩH) if and only if sZ arises
from a(n) [necessarily unique] ΩH-rational point ∈ Z(ΩH).

Proof. Since X satisfies Σ-RNS [cf. Definition 2.2, (vii)], assertion (i) follows
immediately from the well-known structure of the maximal pro-l quotient of the
admissible fundamental group of a stable curve over a separably closed field of
characteristic p [cf. e.g., [SemiAn], Example 2.10], together with the various def-
initions involved. Assertion (ii) follows immediately from assertion (i), together
with Corollary 2.5, (i); Proposition 3.4, (iii) [cf. also Proposition 3.3, (ii)]. Fi-
nally, we consider assertion (iii). First, we observe that it follows immediately

from the profinite nature of the topological group Π
(Σ)
Y that, by replacing Y and

Z by the smooth compactifications of the various finite étale coverings of Y and
Z corresponding, respectively, to suitable open neighborhoods of the image of

sY in Π
(Σ)
Y ×GK

H and the image of sZ in Π
(Σ)
Z ×GK

H, we may assume without
loss of generality that Y and Z are proper. Next, we observe that the various
uniqueness assertions in the statement of Proposition 3.5, (iii), follow immedi-
ately from the final portion of Proposition 2.4, (vii), and that necessity follows
immediately from the various definitions involved. Thus, it suffices to verify
sufficiency. On the other hand, sufficiency follows, in light of the equivalences
of Proposition 3.4, (iv), formally from the final portion of Proposition 2.4, (vii).
This completes the proof of Proposition 3.5.
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Definition 3.6. Let K be a mixed characteristic complete discrete valuation
field of residue characteristic p; X a proper hyperbolic curve over K. Write
K(XK) for the function field of XK . Let v be a p-valuation on K(XK). Write
(OK ⊆) Ov ⊆ K(XK) for the valuation ring associated to v. [Note that it
follows immediately from the well-known theory of one-dimensional function

fields that (Ov)K
def
= Ov · K ⊆ K(XK) is equal either to K(XK) or to the

discrete valuation ring associated to a closed point of XK .] Then:

(i) LetM be an Ov-module. Then we shall say thatM is bounded if the image

of M via the natural morphism M →MK
def
= M ⊗OK

K is contained in a
finitely generatedOv-submodule ofMK . We shall say thatM is unbounded
if M is not bounded.

(ii) We shall say that the p-valuation v is differentially bounded (respectively,
differentially unbounded) if the Ov-module of relative differentials ΩOv/OK

is bounded (respectively, unbounded).

Proposition 3.7 (Approximation of closed points of the generic fiber
via generic points of special fibers). Let K be a mixed characteristic com-
plete discrete valuation field of residue characteristic p;

K = K0 ⊆ K1 ⊆ · · · ⊆ Ki ⊆ · · ·

an ascending chain of finite extension fields of K contained in K and indexed
by N. Write Ω for the p-adic completion of K. Let X be a hyperbolic curve over
K. For each i ∈ N, let

Xi

be a compactified semistable model with split reduction of XKi
over OKi

;

ϕi+1 : Xi+1 −→ Xi ×OKi
OKi+1

a dominant morphism over OKi+1
that induces the identity automorphism on

the generic fiber; vi an irreducible component of (Xi)s. Suppose that, for each
i ∈ N, the projection to Xi of ϕi+1(vi+1) is a closed point xi ∈ (Xi)s ⊆ Xi of
(Xi)s that lies in the smooth locus of vi. Then the following hold:

(i) For each i ∈ N, let ψi : Spec OKi ↪→ Xi be a section whose image contains

xi. Then there exists a collection {ti, γi+1, πi+1}i∈N of elements ti ∈ Ai
def
=

OXi,xi and γi+1, πi+1 ∈ mKi+1 such that, for each i ∈ N, ti ∈ Ai is a
generator of the ideal that defines the scheme-theoretic image of ψi, and

ti = γi+1 + πi+1ti+1,

where we regard Ai as a subring of Ai+1 via the injection Ai ↪→ Ai+1

induced by the composite Xi+1 → Xi [which maps xi+1 7→ xi] of ϕi+1 with
the projection to Xi.
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(ii) We maintain the notation of (i). For each positive integer i, write li
def
=

vp(πi). Suppose that the equality∑
i≥1

li = +∞

holds. Then there exists a closed point xΩ of XΩ such that, for each
i ∈ N, the center on Xi of the closed point xΩ of XΩ, hence also of the
point-theoretic p-valuation on the function field of XKi determined by the
closed point xΩ of XΩ, coincides with xi.

Proof. First, we verify assertion (i). We construct elements ti ∈ Ai and γi+1, πi+1

∈ mKi+1 , for i ∈ N, by induction on i ∈ N. Let t0 ∈ A0 be a generator of
the ideal that defines the scheme-theoretic image of ψ0; i ∈ N. Suppose that
the elements tj+1, γj+1, and πj+1 have been constructed for j ∈ N such that
j < i. Write γi+1 ∈ mKi+1

for the image of ti via the composite homomor-
phism Ai ⊆ Ai+1 → OKi+1

induced by ψi+1. Next, observe that the image in
Ai+1 ⊗OKi+1

Ki+1 of ti − γi+1 is a generator of the maximal ideal associated
to the closed point of XKi+1 determined by ψi+1. Thus, since xi+1 lies in the
smooth locus of (Xi+1)s, and Ai+1 is a regular local ring, hence a unique fac-
torization domain, we conclude that there exists an element πi+1 ∈ mKi+1

such
that ti−γi+1 = πi+1ti+1 for some generator ti+1 ∈ Ai+1 of the ideal that defines
the scheme-theoretic image of ψi+1. This completes the proof of assertion (i).

Next, we verify assertion (ii). Suppose that
∑

i≥1 li = +∞. For each i ∈ N,
fix elements ti ∈ Ai and γi+1, πi+1 ∈ mKi+1 as in the statement of assertion (i).
For each positive integer j, write

sj
def
= γj ·

∏
1≤i≤j−1

πi.

Then since OΩ is p-adically complete, it follows immediately from our assump-
tion that

∑
i≥1 li = +∞ that

∑
j≥1 sj converges to an element γ ∈ mΩ. Write

xΩ for the closed point of XΩ determined by the homomorphism ψΩ : A0 → OΩ

over OK0
that maps t0 7→ γ. Now observe that it follows immediately from the

definition of γ that, for each i ∈ N, ψΩ extends uniquely to a homomorphism
Ai → OΩ over OKi

. On the other hand, the existence of such unique exten-
sions implies that the center on Xi of the closed point xΩ of XΩ, hence also of
the point-theoretic p-valuation on the function field of XKi determined by the
closed point xΩ of XΩ, coincides with xi. This completes the proof of assertion
(ii), hence of Proposition 3.7.

Proposition 3.8 (Characterization of points of type 1 via differentially
unboundedness). In the notation of Definition 3.6 [cf. also the notation of

Proposition 2.3, (viii)], let ṽ be a p-valuation of K(X̃) (⊇ K(XK)) that restricts
to v on K(XK) [cf. Remark 2.2.4]. Suppose that ṽ is primitive. Then the point

xṽ ∈ X̃an associated to ṽ [cf. Proposition 2.3, (viii)] is of type 1 if and only if
v is differentially unbounded.
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Proof. Write xv ∈ Xan for the point determined by xṽ ∈ X̃an. Note that, in
light of Remark 3.1.1, it suffices to verify that if xv is of type 1 (respectively, of
type i ∈ {2, 3, 4}), then v is differentially unbounded (respectively, differentially
bounded).

First, we verify that if xv is of type 1, then v is differentially unbounded.
Suppose that xv is of type 1. Write Ω for the p-adic completion of K; eṽ :
Ov → OΩ for the natural evaluation homomorphism over OK associated to
xṽ. Next, observe that, since Ov ⊗OK

K is a valuation ring [contained in the
function field K(XK) of the hyperbolic curve XK over K] that contains K, and
whose field of fractions coincides with K(XK) [cf. Definition 2.2, (ii)], it follows
immediately from the well-known theory of one-dimensional function fields over
an algebraically closed field that ΩOv/OK

⊗OK
K is a rank one free module over

Ov ⊗OK
K. In particular, there exists an element t ∈ Ov such that eṽ(t) ∈ mΩ,

and dt is a free generator of ΩOv/OK
⊗OK

K over Ov ⊗OK
K. Next, we observe

that, for any positive integer N , there exists an element aN ∈ mK such that

eṽ(t− aN ) = eṽ(t)− aN ∈ pNOΩ.

Note that the above equation implies that t−aN

pN ∈ Ov. On the other hand, it
follows immediately from the definition of the module of relative differentials
that

dt = d(t− aN ) = pN · d( t−aN

pN ) ∈ ΩOv/OK
.

In particular, we conclude that dt is a nonzero p-divisible element of ΩOv/OK
.

Thus, since dt is a free generator of ΩOv/OK
⊗OK

K over Ov ⊗OK
K, the dif-

ferential boundedness of v would imply that arbitrary negative integral powers
of p are contained in Ov, i.e., in contradiction to our assumption that v is a
p-valuation. Hence we conclude that v is differentially unbounded, as desired.

Next, we verify that, if xv is of type 2, then v is differentially bounded.
Suppose that xv is of type 2. Then it follows immediately from Proposition 3.4,
(iii), that there exist a finite extension field L of K, a compactified semistable
model X of XL over OL, and a generic point x of Xs such that Ov

∼→ OX ,x⊗OL

OK . In particular, to verify that v is differentially bounded, it suffices to verify
that ΩOX ,x/OL

is a finitely generated OX ,x-module. On the other hand, this
follows immediately from the fact that OX ,x is essentially of finite type over
OL.

Next, we verify that, if xv is of type 3, then v is differentially bounded.
Suppose that xv is of type 3. Then it follows from Proposition 3.4, (iii), that
the VE-chain associated to the p-valuation ṽ is strongly edge-like. Thus, it
follows immediately from Proposition 2.3, (iii), (iv) [cf. also Definition 3.2, (v),
[the final portion of] (vii); Proposition 3.4, (ii)] that there exist

• an ascending chain

K = K0 ⊆ K1 ⊆ · · · ⊆ Ki ⊆ · · ·

of finite extension fields of K contained in K and indexed by N
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and, for each i ∈ N,

• a compactified semistable model

Xi

with split reduction of XKi over OKi ,

• a dominant morphism

ϕi+1 : Xi+1 −→ Xi ×OKi
OKi+1

over OKi+1 that induces the identity automorphism on the generic fiber,

• a node ei of (Xi)s

satisfying the following conditions:

• For each i ∈ N, the projection to Xi of ϕi+1(ei+1) coincides with the node
ei ∈ (Xi)s ⊆ Xi.

• The equality
Ov = lim−→

i∈N
Ai ⊗OKi

OK

— where, for each i ∈ N, we write Ai
def
= OXi,ei ; the transition map is the

homomorphism Ai⊗OKi
OK → Ai+1⊗OKi+1

OK induced by the composite

Xi+1 → Xi [which maps ei+1 7→ ei] of ϕi+1 with the projection to Xi —
holds [cf. Proposition 2.3, (vi)].

For each i ∈ N, write Si
def
= Spec OKi

; Slog
i for the log scheme determined by the

log structure on Si associated to the closed point of Si; X log
i for the log scheme

over Slog
i determined by the natural log structure on Xi [i.e., the multiplicative

monoid of sections of OXi that are invertible on the open subscheme of Xi

determined by XKi
]; ωX log

i /Slog
i ,ei

for the stalk at ei of the sheaf of relative

logarithmic differentials associated to the proper, log smooth morphism X log
i →

Slog
i [cf. the subsection in Notations and Conventions entitled “Log schemes”].

Then it follows immediately from the definitions of the various log structures
involved that the morphism ϕi+1 : Xi+1 → Xi×OKi

OKi+1
= Xi×Si

Si+1 extends
to a log étale morphism of log schemes

X log
i+1 −→ X

log
i ×Slog

i
Slog
i+1,

which induces a natural isomorphism

ωX log
i /Slog

i ,ei
⊗Ai

Ai+1
∼→ ωX log

i+1/S
log
i+1,ei+1

of Ai+1-modules, hence a natural homomorphism

ϕ : ΩOv/OK
= lim−→

i∈N
ΩAi⊗OKi

OK/OK
−→ ωX log

0 /Slog
0 ,e0

⊗A0 Ov
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of Ov-modules. Here, we note that ϕ induces a natural isomorphism

ΩOv/OK
⊗OK

K
∼→ ωX log

0 /Slog
0 ,e0

⊗A0
Ov ⊗OK

K

of free Ov ⊗OK
K-modules of rank 1. Thus, since ωX log

0 /Slog
0 ,e0

is a finitely

generated A0-module, we conclude that v is differentially bounded, as desired.
Finally, we verify that, if xv is of type 4, then v is differentially bounded.

Suppose that xv is of type 4. Then it follows from Proposition 3.3, (ii); Propo-
sition 3.4, (iii) [cf. also Remark 3.1.1], that the VE-chain associated to the
p-valuation ṽ [cf. Proposition 2.3, (viii)] is weakly verticial. Thus, it follows
immediately from Proposition 2.3, (iii), (iv) [cf. also Definition 3.2, (iii); the
final portion of Remark 2.1.4] that there exist

• an ascending chain

K = K0 ⊆ K1 ⊆ · · · ⊆ Ki ⊆ · · ·

of finite extension fields of K contained in K and indexed by N

and, for each i ∈ N,

• a compactified semistable model

Xi

with split reduction of XKi
over OKi

,

• a dominant morphism

ϕi+1 : Xi+1 −→ Xi ×OKi
OKi+1

over OKi+1
that induces the identity automorphism on the generic fiber,

• an irreducible component vi of (Xi)s

satisfying the following conditions:

• For each i ∈ N, the projection to Xi of ϕi+1(vi+1) is a closed point xi ∈
(Xi)s ⊆ Xi of (Xi)s that lies in the smooth locus of vi.

• For each i ∈ N, there exists a section ψi : Spec OKi ↪→ Xi whose image
contains xi.

• The equality
Ov = lim−→

i∈N
Ai ⊗OKi

OK

— where, for each i ∈ N, we write Ai
def
= OXi,xi

; the transition map is the
homomorphism Ai⊗OKi

OK → Ai+1⊗OKi+1
OK induced by the composite

Xi+1 → Xi [which maps xi+1 7→ xi] of ϕi+1 with the projection to Xi —
holds [cf. Proposition 2.3, (vi)].
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Thus, we are in the situation of Proposition 3.7, (i). In particular, there exists
a collection {ti, γi+1, πi+1}i∈N of elements ti ∈ Ai and γi+1, πi+1 ∈ mKi+1 as in
Proposition 3.7, (i), such that ti = γi+1 + πi+1ti+1. Next, observe that since xi
lies in the smooth locus of (Xi)s, it follows that ΩAi/OKi

is a free Ai-module of
rank 1 generated by dti. In particular, since ti = γi+1 + πi+1ti+1, we conclude
that

ΩAi+1/OKi+1
=

1

πi+1
· ΩAi/OKi

⊗Ai
Ai+1.

Thus, it follows immediately from the equality Ov = lim−→i∈N Ai ⊗OKi
OK that

ΩOv/OK
= lim−→

i∈N

1∏
1≤j≤i+1 πj

· ΩA0/OK0
⊗A0 Ov.

Now suppose that v is differentially unbounded. For each positive integer i,

write li
def
= vp(πi). Then since v is differentially unbounded, we conclude that

the equality ∑
i≥1

li = +∞

holds. Next, we observe that it follows immediately from Proposition 3.7, (ii)
[cf. also the equality Ov = lim−→i∈N Ai ⊗OKi

OK ], that v determines a closed

point xΩ of XΩ such that the valuation ring of the point-theoretic p-valuation
on K(XK) associated to xΩ dominates Ov, hence coincides with Ov. Thus, we
conclude that xv is the point ∈ Xan determined by xΩ, hence that xv is of type
1, in contradiction to our assumption that xv is of type 4. This completes the
proof of Proposition 3.8.

Proposition 3.9 (Characterization of points of type 1 via geometric
Σ-tempered decomposition groups). In the notation of Definition 3.2, sup-
pose that p ∈ Σ. Let x ∈ Xan be an element; l ∈ Σ \ {p}; Dx a decomposition

group in the geometric Σ-tempered fundamental group ∆Σ-tp
X of X associated to

x. Then the following hold:

(i) Suppose that x is of type 1. Then Dx is trivial.

(ii) Suppose that x is of type 4. Then there exists an open subgroup of Dx that
admits a continuous surjective homomorphism to Zp. In particular, Dx is
nontrivial.

(iii) Suppose that x is of type i ∈ {2, 3}, and that X satisfies Σ-RNS. Then
there exists an open subgroup of Dx that admits a continuous surjective
homomorphism to Zl. In particular, Dx is nontrivial.

(iv) Suppose that X satisfies Σ-RNS. Then x is of type 1 if and only if Dx is
trivial.
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Proof. Let x̃ ∈ X̃an be a lifting of x. First, we observe that assertion (i) follows
immediately from the various definitions involved. Next, we verify assertion (iii).
Suppose that x [or, equivalently, x̃] is of type i ∈ {2, 3}, and that X satisfies
Σ-RNS. Then it follows immediately from Proposition 3.4, (iii); Proposition 3.5,
(i), that there exists an open subgroup of Dx that admits a continuous surjective
homomorphism to Zl. This completes the proof of assertion (iii). Assertion (iv)
follows immediately from assertions (i), (ii), (iii) [cf. also Remark 3.1.1].

Thus, to complete the proof of Proposition 3.9, it suffices to verify assertion
(ii). To verify assertion (ii), by replacing K by a suitable extension field of
K contained in Ω, we may assume without loss of generality [cf. Proposition
3.4, (iii)] that the residue field of K is separably closed. Suppose that x [or,
equivalently, x̃] is of type 4, and that no open subgroup of Dx admits a continuous

surjective homomorphism to Zp. Write ṽ for the primitive p-valuation on K(X̃)
associated to x̃ [cf. Proposition 2.3, (viii)]; v for the p-valuation obtained by
restricting ṽ to K(XK). Then since x is of type 4, it follows from Proposition
3.8 that ΩOv/OK

is bounded. In particular, by replacing K by a finite extension
field of K, if necessary, we observe that there exist

• a positive integer N and

• a compactified semistable model with split reduction X of X over OK

such that the center z on X of the VE-chain associated to ṽ lies in the smooth
locus of Xs ⊆ X , arises from a point of X valued in the residue field of OK , and
satisfies the following condition [cf. the portion of the proof of Proposition 3.8
concerning points of type 4]:

(ΩOX ,z/OK
⊆) ΩOX ,z/OK

⊗OX ,z
Ov ⊆ ΩOv/OK

⊆ 1

pN
· ΩOX ,z/OK

⊗OX ,z
Ov

— where by a slight abuse of notation, we use the notation “⊆” to denote the
various natural inclusions, and we note that since ΩOX ,z/OK

is a free OX ,z-
module of rank 1, the Ov-module ΩOX ,z/OK

⊗OX ,z
Ov is a free Ov-module of

rank 1. In particular, it follows immediately that the second and third inclusions
of the above display induce the injections on the respective p-adic completions
[cf. the discussion of Remark 2.2.4].

In the remainder of the proof of assertion (ii), we suppose that we are in
the situation of Proposition 2.12. Moreover, by replacing X by a suitable geo-
metrically pro-Σ connected finite étale covering of X [cf. Proposition 2.3, (xii);
Definition 2.7], we may assume without loss of generality that

X = Yn, X = Yn, z = (yn)s, ÔX ,z = ÔYn,yn
,

where ÔX ,z denotes the completion of the local ring OX ,z. Write

Ψ : HomOK
(T̂qtr,n, Ĝm) −→ Ô×

X ,z

for the assignment discussed in Proposition 2.13, (ii). Let f ∈ HomOK
(T̂qtr,n, Ĝm)

be a nontrivial element [which exists by Propositions 2.11, (i); 2.13, (i)]. Thus,
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the logarithmic differential

θ
def
= dΨ(f)

Ψ(f) ∈ ΩÔX ,z/OK

def
= lim←−

m≥1

Ω(OX ,z/mm
z )/OK

— where mz denotes the maximal ideal of OX ,z; m ranges over the positive

integers — of Ψ(f) ∈ Ô×
X ,z is ̸= 0 [cf. the first display, as well as the discussion

following this first display, in the proof of Theorem 2.16, where we observe that
this portion of the proof of Theorem 2.16 may be applied even in the case of
the “K” — i.e., with separably closed residue field — of the present discussion].

Next, write Ôv for the p-adic completion of Ov; K̂v for the field of fractions of
Ôv. Since v is a real valuation [cf. Proposition 2.3, (vii); Remark 3.1.1], it follows
immediately from the final portion of Remark 2.2.4 that the henselization of Ov

may be regarded as a subring of Ôv. Write H ⊆ ∆Σ-tp
X for the closed subgroup

obtained by forming the intersection of the kernels of the continuous surjective
homomorphisms ∆Σ-tp

X ↠ Zp; K(X̃)H , K(X̃)Dx ⊆ K(X̃) for the subfields fixed
by H and Dx, respectively. Then since there does not exist any continuous
surjective homomorphism Dx ↠ Zp, we thus conclude that Dx ⊆ H, hence that

K(X̃)H ⊆ K(X̃)Dx ⊆ K̂v.

On the other hand, it follows immediately from the definition of the center z
on X that there exists a natural homomorphism ϕ : OX ,z → Ov of local rings,

which thus induces a homomorphism ϕ̂ : ÔX ,z → Ôv of topological local rings.

Now we claim that ϕ̂ is injective. Indeed, suppose that p
def
= Ker(ϕ̂) ̸= 0.

Then since ÔX ,z is a regular local ring of dimension 2, and Ôv is p-torsion-free,
it follows that p is a prime ideal of height 1 such that p ∩ OK = {0}. Next,

observe that (ÔX ,z/p)⊗OK
(OK/mK) is finite over OK/mK . Thus, since ÔX ,z/p

is a complete OK-module, we conclude that ÔX ,z/p is finite over OK . On the

other hand, observe that the composite homomorphism OX ,z ↪→ Ov ↪→ Ôv is

injective, hence that the natural homomorphism OX ,z → ÔX ,z/p is injective.
In particular, we conclude that OX ,z ⊗OK

K embeds into a finite dimensional

K-vector space, a contradiction. This completes the proof of our claim that ϕ̂
is injective.

Next, we observe that since the image of Ψ(f) is p-divisible in the multi-

plicative group {ÔX ,z ⊗OX ,z
K(X̃)H}× [cf. Proposition 2.13, (ii)], the image

of Ψ(f) in the multiplicative group K̂×
v , hence also in the multiplicative group

Ô×
v , is p-divisible. Write

ΩÔv/OK

def
= lim←−

m≥1

Ω(Ov/pm·Ov)/OK
,

where m ranges over the positive integers. Then it follows immediately from
well-known basic facts concerning modules of differentials, together with the
fact that ΩOX ,z/OK

is a free OX ,z-module of rank 1, that

ΩÔX ,z/OK
= lim←−

m≥1

ΩOX ,z/OK
⊗OX ,z

OX ,z/m
m
z = ΩOX ,z/OK

⊗OX ,z
ÔX ,z;
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ΩÔv/OK
= lim←−

m≥1

ΩOv/OK
⊗Z Z/pmZ.

In particular, since ϕ̂ is injective, it thus follows from the discussion of the final
portion of the second paragraph of the present proof that

ΩÔX ,z/OK
= ΩOX ,z/OK

⊗OX ,z
ÔX ,z ⊆ ΩOX ,z/OK

⊗OX ,z
Ôv ⊆ ΩÔv/OK

,

hence that the image θv ∈ ΩÔv/OK
of θ in ΩÔv/OK

is ̸= 0. On the other hand,

since the image of Ψ(f) in Ô×
v is p-divisible, and ΩÔv/OK

is, by definition, p-

adically separated, we conclude that θv = 0, a contradiction. This completes the
proof of assertion (ii), hence of Proposition 3.9.

Corollary 3.10 (Reconstruction of points of type 1 via geometric tem-
pered fundamental groups). Let Σ ⊆ Primes be a subset of cardinality ≥ 2
that contains p; K a mixed characteristic complete discrete valuation field of
residue characteristic p; X a hyperbolic curve over K. Write Ω for the p-adic
completion of K; Πtp

(−) for the Σ-tempered fundamental group of (−); X̃ → X

for the universal pro-Σ covering corresponding to Πtp
X [so Gal(X̃/X) may be

identified with the pro-Σ completion of Πtp
X ]. Suppose that X satisfies Σ-RNS.

Then the set X̃(Ω) equipped with its natural action by Gal(X̃/X) — hence also,

by passing to the set of Gal(X̃/X)-orbits, the quotient set X̃(Ω) ↠ X(Ω) —
may be reconstructed, in a purely combinatorial/group-theoretic way and func-
torially with respect to isomorphisms of topological groups, from the underlying
topological group of Πtp

X .

Proof. Recall that, for any hyperbolic curve Y over K, the set of cuspidal
inertia subgroups of Πtp

Y , hence also the genus of Y , may be reconstructed,
in a purely combinatorial/group-theoretic way and functorially with respect
to isomorphisms of topological groups, from the underlying topological group
of Πtp

Y [cf. the generalized version of [SemiAn], Corollary 3.11, discussed in
[AbsTopII], Remark 2.11.1, (i)]. On the other hand, in the case where X
is a proper hyperbolic curve over K, we observe that Corollary 3.10 follows
immediately from Proposition 3.9, (iv), and [the proof of] Corollary 2.5, (i).
Thus, by applying this observation to the Σ-tempered fundamental groups of
the smooth compactifications of the various [connected] geometrically pro-Σ
finite étale Galois coverings of X over K of genus ≥ 2, we conclude that
X̃(Ω) equipped with its natural action by Gal(X̃/X) may be reconstructed,
in a purely combinatorial/group-theoretic way and functorially with respect to
isomorphisms of topological groups, from the underlying topological group of
Πtp

X . This completes the proof of Corollary 3.10.
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Theorem 3.11 (Preservation of decomposition subgroups associated
to closed points). For □ ∈ {†, ‡}, let p□ be a prime number; Σ□ ⊆ Primes a
subset that contains p□; l ∈ (Σ†\{p†}) ∩ (Σ‡\{p‡}); K□ a mixed characteristic
complete discrete valuation field of residue characteristic p□; X□ a hyperbolic

curve over K□; L□ ⊆ K
□

a tamely ramified [not necessarily finite!] Galois
extension of K□ that may be written as a union of finite tamely ramified Galois

extensions of K□ in K
□

of ramification index prime to l. Let

σ : Π
(Σ†)

X†
L†

∼→ Π
(Σ‡)

X‡
L‡

be an isomorphism of profinite groups between the geometrically pro-Σ† étale
fundamental group of X†

L† and the geometrically pro-Σ‡ étale fundamental group

of X‡
L† . For □ ∈ {†, ‡}, write ∆Σ□

X□
L□

for the geometric pro-Σ□ étale fundamental

group of X□
L□ , IL□ ⊆ GL□ for the inertia subgroup of GL□ , and kL□ for the

residue field of L□. Then the following hold:

(i) We have an equality p† = p‡, and σ induces isomorphisms of profinite

groups ∆Σ†

X†
L†

∼→ ∆Σ‡

X‡
L‡
, GL†

∼→ GL‡ . In particular, Σ† = Σ‡. Finally, if,

for each □ ∈ {†, ‡}, every pro-l closed subgroup of the kernel of the l-adic
cyclotomic character on Gk

L□ is trivial [cf. Remark 3.11.1 below], then,

for all sufficiently small open subgroups J† ⊆ GL† , J‡ ⊆ GL‡ such that
σ induces an isomorphism J† ∼→ J‡, σ also induces an isomorphism of
profinite groups between the respective images of J† ∩ IL† , J‡ ∩ IL‡ in the
maximal pro-l quotients J† ↠ (J†){l}, J‡ ↠ (J‡){l}.

(ii) Suppose that, for all sufficiently small open subgroups J† ⊆ GL† , J‡ ⊆
GL‡ such that σ induces an isomorphism J† ∼→ J‡, σ also induces an
isomorphism of profinite groups between the respective images of J† ∩ IL† ,
J‡ ∩ IL‡ in the maximal pro-l quotients J† ↠ (J†){l}, J‡ ↠ (J‡){l}.

Write Σ
def
= Σ† = Σ‡ [cf. (i)]. Suppose, moreover, that X† and X‡

satisfy Σ-RNS. Then σ induces a bijection between the respective sets of
decomposition subgroups associated to closed points of X†

L̂† and X‡
L̂‡ , where

L̂†, L̂‡ denote the respective completions of L†, L‡.

Proof. First, we verify assertion (i). Write τ †
def
= σ−1, τ ‡

def
= σ. For □ ∈ {†, ‡},

write □′ for the unique element of {†, ‡} \ {□}. Then observe that it follows

immediately, by applying to τ□(∆Σ□′

X□′

L□′
), for both □ = † and □ = ‡,

• the argument of the proof of [MiTs1], Corollary 4.6 [in the case where the
extension L□/K□ is finite; here, we note that in this case, it follows from

[MiSaTs], Theorem 3.8, that if Π
(Σ□)

X□
L□

is topologically finitely generated,

then the extension L□′
/K□′

is also finite], and
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• [MiSaTs], Theorem 3.8 [in the case where the extension L□/K□ is infinite],

that σ induces isomorphisms of profinite groups

∆Σ†

X†
∼→ ∆Σ‡

X‡ ; GL†
∼→ GL‡ .

Thus, we conclude from [MiTs2], Theorem A, (i), together with the well-known
structure of geometric fundamental groups of hyperbolic curves over fields of
characteristic zero [cf., e.g., [MT], Remark 1.2.2], that p† = p‡, and Σ† =
Σ‡. The final portion of assertion (i) follows immediately from the well-known
structure, for □ ∈ {†, ‡}, of the Galois group Gal((K□)tm/K□) over K□ of the
maximal tamely ramified extension (K□)tm of K□ [under the assumption that
every pro-l closed subgroup of the kernel of the l-adic cyclotomic character on
Gk

L□ is trivial], which implies that, for any sufficiently small open subgroup

J□ ⊆ GL□ , the image of J□ ∩ IL□ in the maximal pro-l quotient J□ ↠ (J□){l}

coincides with the unique maximal abelian normal closed subgroup of (J□){l}.
This completes the proof of assertion (i).

Next, we verify assertion (ii). First, we note that it follows from assertion

(i) that p
def
= p† = p‡. Thus, in light of our assumption on σ [cf. also assertion

(i)], it follows from [CmbGC], Corollary 2.7, (i) [applied in the case where “l” is
taken to be the p of the present discussion], (iii) [applied in the case where “l” is
taken to be the l of the present discussion], that the isomorphism ∆Σ

X†
L†

∼→ ∆Σ
X‡

L†

[cf. (i)] satisfies the condition (b∃) of [CbTpIII], Proposition 3.6. In particular,
by applying [CbTpIII], Proposition 3.6, (i), we conclude that the isomorphism
∆Σ

X†
L†

∼→ ∆Σ
X‡

L‡
arises, up to composition with an inner automorphism, from an

isomorphism between the respective geometric Σ-tempered fundamental groups
of X† and X‡. Thus, by replacing σ by the composite of σ with an inner
automorphism arising from ∆Σ

X‡
L‡
, we may assume without loss of generality

that σ arises from an isomorphism between the respective pull-backs via the
natural inclusions GL† ⊆ GK† , GL‡ ⊆ GK‡ of the geometrically Σ-tempered
fundamental groups of X† and X‡.

Next, write X̃†, X̃‡ for the universal geometrically pro-Σ coverings corre-

sponding to Π
(Σ)

X†
L†
, Π

(Σ)

X‡
L‡
, respectively; Ω†, Ω‡ for the p-adic completions of

K
†
, K

‡
, respectively. Then since σ determines an isomorphism between the

respective geometric Σ-tempered fundamental groups of X† and X‡, it follows
immediately from Corollary 3.10 that σ induces a bijection

X̃†(Ω†)
∼→ X̃‡(Ω‡)

that is compatible with the respective natural actions of Π
(Σ)

X†
L†
, Π

(Σ)

X‡
L†
. Thus,

in light of [Tate], §3.3, Theorem 1 [which, as is easily verified, admits a routine

generalization to mixed characteristic complete valuation fields such as L̂†, L̂‡,
i.e., whose valuations are not necessarily discrete [but nonetheless tamely ram-
ified over some discrete valuation], and whose residue fields are not necessarily
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perfect], we conclude that σ induces a bijection between the respective sets of

decomposition subgroups associated to closed points of X†
L̂† and X‡

L̂‡ . This

completes the proof of assertion (ii), hence of Theorem 3.11.

Remark 3.11.1. In passing, we observe that the condition concerning the kernel
of the l-adic cyclotomic character on Gk

L□ that appears in the final portion of

Theorem 3.11, (i), is satisfied if kL□ is either separably closed or algebraic over
the finite field of cardinality p.

We are now in a position to verify an absolute version of the Grothendieck
Conjecture for arbitrary hyperbolic curves over p-adic local fields [cf. Theorem
3.12 below], which is one of the central open questions in anabelian geometry.

Theorem 3.12 (Absolute version of the Grothendieck Conjecture for
arbitrary hyperbolic curves over p-adic local fields). Let p†, p‡ be prime
numbers; Σ ⊆ Primes a subset of cardinality ≥ 2 that contains p† and p‡; K†,
K‡ mixed characteristic local fields of residue characteristic p†, p‡, respectively;
X†, X‡ hyperbolic curves over K†, K‡, respectively. Then the natural map

Isom(X†, X‡) −→ OutIsom(Π
(Σ)

X† ,Π
(Σ)

X‡ )

is bijective.

Proof. First, we observe that any isomorphism of schemes between X† and X‡

necessarily lies over an isomorphism of fields between K† and K‡. [Indeed, this
follows immediately by considering subgroups of the groups of units Γ(X†,O×

X†),

Γ(X‡,O×
X‡) whose unions with {0} are closed under addition.] Now Theorem

3.12 follows immediately by combining Theorems 2.17; 3.11, (i), (ii) [cf. also
Remark 3.11.1], of the present paper with [AbsTopII], Corollary 2.9.

Remark 3.12.1. Theorem 3.12 may be regarded as a complete affirmative resolu-
tion of the absolute version of the Grothendieck Conjecture for hyperbolic curves
over p-adic local fields in the geometrically pro-Σ case, where Σ ⊆ Primes is a
subset of cardinality ≥ 2 that contains the residue characteristic of the base
field. On the other hand, the following questions remain open, to the authors’
knowledge, at the time of writing of the present paper:

Question 1: Can one prove a geometrically pro-p version of the abso-
lute Grothendieck Conjecture for hyperbolic curves over p-adic local
fields? In this context, we observe that certain partial results in this
direction are obtained in [Hgsh].

Question 2: Can one prove an absolute version of the Grothendieck
Conjecture for hyperbolic curves over more general base fields? For
instance, one may consider the case where the base fields are mixed
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characteristic complete discrete valuation fields whose residue fields
are algebraic over Fp, i.e., a class of fields for which a relative ver-
sion of the Grothendieck Conjecture for hyperbolic curves has been
known for some time [cf. [AnabTop], Theorem 4.12].

Theorem 3.13 (Absolute version of the Grothendieck Conjecture for
configuration spaces associated to arbitrary hyperbolic curves over
p-adic local fields). Let p†, p‡ be prime numbers; K†, K‡ mixed characteristic
local fields of residue characteristic p†, p‡, respectively; X†, X‡ hyperbolic curves
over K†, K‡, respectively; n†, n‡ positive integers. Write X†

n† (respectively,

X‡
n‡) for the n†-th (respectively, n‡-th) configuration space associated to X†

(respectively, X‡). Then the natural map

Isom(X†
n† , X

‡
n‡) −→ OutIsom(ΠX†

n†
,ΠX‡

n‡
)

is bijective.

Proof. First, we observe that any isomorphism of schemes between X†
n† and

X‡
n‡ necessarily lies over an isomorphism of fields between K† and K‡. [Indeed,

this follows immediately by a similar argument to the argument applied in
the proof of Theorem 3.12.] Now Theorem 3.13 follows immediately from a

routine argument via induction on n
def
= n† = n‡ [cf. [AbsTopI], Theorem 2.6,

(v); [HMM], Theorem A, (i), (ii)], by combining Theorem 3.12 of the present
paper with the relative version of the Grothendieck Conjecture given in [LocAn],
Theorem A.

Next, we discuss the functorial behavior of the lengths of nodes of special
fibers of compactified semistable models [cf. Definition 3.14 below] with respect
to finite morphisms between compactified semistable models that extend finite
étale Galois coverings of hyperbolic curves over mixed characteristic complete
discrete valuation fields.

Definition 3.14. Let K be a mixed characteristic complete discrete valuation
field of residue characteristic p; X a hyperbolic curve over K; X a compactified
semistable model with split reduction of X over OK ; e a node of Xs. Recall that
the completion of the local ring OX ,e at e is isomorphic to OK [[x, y]]/(xy − a),
where x, y denote indeterminates; a ∈ mK \ {0}. Then we shall refer to vp(a)
as the length of e. [Note that the length of e is independent of the choice of a,
as well as of the isomorphism OX ,e

∼→ OK [[x, y]]/(xy − a) over OK [cf. [Hur],
§3.7].]
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Proposition 3.15 (Functorial behavior of the lengths of nodes). Let K
be a mixed characteristic complete discrete valuation field of residue character-
istic p; X a hyperbolic curve over K; Y → X a [connected] finite étale Galois
covering of hyperbolic curves over K; Y a compactified semistable model of Y

over OK that is stabilized by G
def
= Gal(Y/X). Write X for the compactified

semistable model of X over OK obtained by forming the quotient of Y by the
action of G on Y [cf. Proposition 2.3, (iv)]; f : Y → X for the natural quotient
morphism. Suppose that

• Y has split reduction, and that

• the natural action of G on Ys does not permute the branches of some node
eY of Ys.

Write eX
def
= f(eY ) for the node of Xs determined by eY [cf. Proposition 2.3,

(iv)]; lX , lY for the lengths of the nodes eX , eY [relative to the compactified
semistable models X , Y, respectively]. Then there exists a positive integer m
such that

lX = m · lY .

Moreover, the positive integer m may be computed as the cardinality of the
decomposition subgroup [i.e., the stabilizer subgroup] of eY in G.

Proof. Write S
def
= Spec OK ; Slog for the log scheme obtained by equipping S

with the log structure determined by the closed point of S; X log, Y log for the
log schemes over Slog determined by the compactified semistable models X , Y,
respectively [cf. the discussion of the subsection in Notations and Conventions
entitled “Log schemes”]. Observe that f naturally determines a finite morphism
f log : Y log → X log of log schemes, hence a finite morphism

(Spec ÔY,eY )
log −→ (Spec ÔX ,eX )log,

where ÔX ,eX , ÔY,eY denote the completions of the respective normal local rings
OX ,eX , OY,eY , and the superscripts “log” denote the log structures induced by
the respective log structures of X log, Y log. Since Y is assumed to have split
reduction, it follows [cf. the discussion of Definition 3.14] that

ÔX ,eX
∼= OK [[u1, u2]]/(u1u2 − a), ÔY,eY

∼= OK [[v1, v2]]/(v1v2 − b),

where u1, u2, v1, v2 denote indeterminates; a, b ∈ mK\{0} are elements such that
lX = vp(a), lY = vp(b). Moreover, it follows immediately from the definitions
of the log structures involved, together with the geometry of the irreducible
components of the special fibers of Spec ÔX ,eX and Spec ÔY,eY , that, after
possibly switching the indices ∈ {1, 2} of [either or both of] the pairs (u1, u2)

and (v1, v2), there exist positive integers m1, m2 and units c1, c2 ∈ Ô×
Y,eY

such
that m1 ≥ m2, and

u1 = c1 · vm1
1 , u2 = c2 · vm2

2 ,
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where we regard u1, u2 as elements in ÔY,eY via the natural injection ÔX ,eX ↪→
ÔY,eY . In particular, it holds that

a = u1u2 = c1c2v
m1
1 vm2

2 = c1c2v
m1−m2
1 bm2 ∈ OK [[v1, v2]]/(v1v2 − b).

On the other hand, such a relation implies, in light of the well-known structure
of the log structures involved, i.e., in effect, the geometry of the irreducible

components of the special fibers of Spec ÔX ,eX and Spec ÔY,eY , that m
def
=

m1 = m2, hence that a = c1c2b
m. In particular, we conclude that lX = m · lY ,

as desired. Finally, the fact that m may be computed as the cardinality of
the decomposition subgroup [i.e., the stabilizer subgroup] of eY in G follows
immediately from the fact that the generic degree of the [finite, generically

étale] morphism Spec ÔY,eY → Spec ÔX ,eX is [easily computed, via the explicit
presentations of OY,eY , OX ,eX given above, to be] m. This completes the proof
of Proposition 3.15.

Next, we apply Proposition 3.15, together with the theory of p-adic arith-
metic cuspidalizations developed in [Tsjm], §2, to prove that the various p-adic
versions of the Grothendieck-Teichmüller group that appear in the literature [cf.
[Tsjm], Remark 2.1.2] in fact coincide.

Theorem 3.16 (Equality of various p-adic versions of the Grothendieck-

-Teichmüller group). Write X
def
= P1

Qp
\ {0, 1,∞};

GT ⊆ Out(ΠX)

for the Grothendieck-Teichmüller group [cf. [CmbCsp], Remark 1.11.1];

GTM ⊆ GT (⊆ Out(ΠX))

for the metrized Grothendieck-Teichmüller group [cf. [CbTpIII], Remark 3.19.2];

GTtp
p

def
= GT ∩ Out(Πtp

X ) ⊆ Out(ΠX)

[cf. the subsection in Notations and Conventions entitled “Fundamental groups”;
[Tsjm], Definition 2.1]. Then the natural inclusion

GTM ⊆ GTtp
p

of subgroups of GT is an equality. In particular, it holds that

GTM = GTp = GTG = GTtp
p

[cf. [Tsjm], Remark 2.1.2].
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Proof. First, we recall that there exists a natural surjection

ϕ : GTtp
p ↠ GQp

whose restriction to GQp
is the identity automorphism [cf. [Tsjm], Corollary B,

as well as Remark 3.16.1 below]. Thus, since GQp
⊆ GTM ⊆ GTtp

p , it suffices

to prove that Ker(ϕ) ⊆ GTM. Let σ ∈ Ker(ϕ). Fix a lifting σ̃ ∈ Aut(Πtp
X ) of

σ. [Here and in the following discussion, Πtp
(−) will always denote the Primes-

tempered fundamental group of (−).]
Then it follows immediately from the construction of ϕ [cf. the discussion, in

the proof of [Tsjm], Corollary 2.4, of the two paragraphs following the proof of
Claim 2.4.B; the discussion, in the proof of [HMT], Theorem 4.4, of the observa-
tion immediately following the statement of Claim 4.4.A; [NCBel], Corollary 1.2]
that, for any finite subset S ⊆ Q \ {0, 1} ⊆ X(Qp), σ̃ lifts to an automorphism

of Πtp
XS

[where we write XS
def
= X \ S] with respect to the natural surjection

Πtp
XS
↠ Πtp

X determined [up to composition with an inner automorphism] by the
natural open immersion XS ↪→ X.

Next, let ψY : Y → X be a connected finite étale covering over Qp. Write
ψZ : Z → X for the Galois closure of ψY ; Z for the compactified stable model of
Z over OQp

; ψσ
Y : Y σ → X, ψσ

Z : Zσ → X for the connected finite étale coverings

over Qp that correspond to the open subgroups σ̃(Πtp
Y ) ⊆ Πtp

X , σ̃(Πtp
Z ) ⊆ Πtp

X ,

respectively. For each finite subset S ⊆ Q \ {0, 1} ⊆ X(Qp), write

• ZS (respectively, Zσ
S ) for the compactified stable model of ZS

def
= Z \

ψ−1
Z (S) (respectively, Zσ

S
def
= Zσ \ (ψσ

Z)
−1(S)) over OQp

;

• XS (respectively, YS , Yσ
S ) for the compactified semistable model of XS

(respectively, YS
def
= Y \ ψ−1

Y (S), Y σ
S

def
= Y σ \ (ψσ

Y )
−1(S)) obtained by

forming the quotient of ZS (respectively, ZS , Zσ
S ) via the natural action

of Gal(Z/X) (respectively, Gal(Z/Y ), Gal(Zσ/Y σ)) [cf. Proposition 2.3,
(iv)].

Next, observe that there exists a finite subset T ⊆ Q \ {0, 1} ⊆ X(Qp) such
that

• the natural action of Gal(Z/X) on (ZT )s does not permute any branches
of nodes, and

• XT , YT , Yσ
T are the respective compactified stable models of XT , YT , Y

σ
T

over OQp
.

Then since σ̃ lifts to an automorphism of Πtp
XT

[cf. the above discussion], hence
to an isomorphism

Πtp
Z ×Πtp

X
Πtp

XT
= Πtp

ZT

∼→ Πtp
Zσ

T
= Πtp

Zσ ×Πtp
X
Πtp

XT
,
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it follows immediately from Proposition 2.3, (iv), together with [SemiAn], Corol-
lary 3.11, that σ̃ induces a commutative diagram of semi-graphs

ΓZT

∼−−−−→ ΓZσ
Ty y

ΓXT
ΓXT

,

where Γ(−) denotes the dual semi-graph associated to (−)s, compatible with
the respective natural actions of Gal(Z/X), Gal(Zσ/X). Thus, we conclude
from Proposition 3.15 that the isomorphism ΓZT

∼→ ΓZσ
T
of dual semi-graphs is

compatible with the respective metric structures [cf. [CbTpIII], Definition 3.5,
(iii)]. On the other hand, σ̃ also induces a commutative diagram of semi-graphs

ΓZT

∼−−−−→ ΓZσ
Ty y

ΓYT

∼−−−−→ ΓYσ
T

compatible with the respective natural actions of Gal(Z/Y ), Gal(Zσ/Y σ) [cf.
Proposition 2.3, (iv); [SemiAn], Corollary 3.11]. Thus, since the isomorphism
ΓZT

∼→ ΓZσ
T
of dual semi-graphs is compatible with the respective metric struc-

tures, we conclude from Proposition 3.15 again that the isomorphism ΓYT

∼→
ΓYσ

T
of dual semi-graphs is also compatible with the respective metric struc-

tures. Finally, it follows immediately from the well-known theory of pointed
stable curves and contraction morphisms that arise from eliminating cusps, as
exposed in [Knud] [cf. also Remark 2.1.4], that this implies that, if we write
Y, Yσ for the respective compactified stable models of Y , Y σ over OQp

, then

the isomorphism ΓY
∼→ ΓYσ of dual semi-graphs induced by σ̃ [cf. [SemiAn],

Corollary 3.11] is compatible with the respective metric structures. Thus, we
conclude from [CbTpIII], Definition 3.7, (ii); [CbTpIII], Remark 3.19.2, that
GTM = GTtp

p . This completes the proof of Theorem 3.16.

Remark 3.16.1. Here, we recall that one of the key ingredients in the proof of
[Tsjm], Corollary B, is the theory of resolution of nonsingularities developed in
[Lpg1].

As a corollary, we obtain the following affirmative answer to the question
posed in the discussion immediately preceding Theorem E in [CbTpIII], Intro-
duction:

Corollary 3.17 (Commensurable terminality of various p-adic versions
of the Grothendieck-Teichmüller group). We maintain the notation of
Theorem 3.16. Then GTM = GTp = GTG = GTtp

p is commensurably terminal

in GT, i.e., the commensurator CGT(GTM) of GTM in GT is equal to GTM.
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Proof. It follows immediately from Theorem 3.16, together with [CbTpIII], The-
orem E, that GTM ⊆ CGT(GTM) ⊆ GTG = GTM. Thus, we conclude that
CGT(GTM) = GTM, as desired.

Proposition 3.18 (Reconstruction of the subset of Qp-rational points

from the p-adic Grothendieck-Teichmüller group). Write X
def
= P1

Qp
\

{0, 1,∞}; Πtp
X for the Primes-tempered fundamental group of X. Then the

subset X(Qp) ⊆ X(Cp), where we think of “X(Cp)” as the set reconstructed from

Πtp
X in Corollary 3.10, may be reconstructed, in a purely combinatorial/group-

theoretic way, from the data

(Πtp
X , GTtp

p ⊆ Out(Πtp
X ))

— consisting of the underlying topological group of Πtp
X and the subgroup GTtp

p ⊆
Out(Πtp

X ) — as the subset of elements fixed by some open subgroup of GTtp
p .

Moreover, this reconstruction procedure is functorial with respect to isomor-
phisms of topological groups for which the induced isomorphism on “Out(−)”
preserves the given subgroup of “Out(−)”.

Proof. First, we observe that it follows immediately from the existence of the
natural homeomorphism “θX̃” of Proposition 2.3, (viii), together with the defi-

nition of “VE(X̃)tor” [cf. Definition 2.2, (vi)], that the subset X(Qp) ⊆ X(Cp)

is dense in X(Cp), and that the natural action of GTtp
p on X(Cp) is via self-

homeomorphisms of X(Cp) [cf. Corollary 3.10 and its proof; Corollary 3.16].
Thus, since the natural action of GTtp

p on X(Qp) factors through the surjection

GTtp
p ↠ GQp

[cf. [Tsjm], Corollary B, and its proof], we conclude that the

natural action GTtp
p on X(Cp) factors through this surjection GTtp

p ↠ GQp ,

and hence [cf. [Tate], §3.3, Theorem 1] that the subset X(Qp) ⊆ X(Cp) may be

characterized as the subset of elements fixed by some open subgroup of GTtp
p .

This completes the proof of Proposition 3.18.

Finally, we apply the theory of resolution of nonsingularities and point-
theoreticity [cf., especially, Corollary 2.5, (i); Corollary 3.10], together with the
theory of metric-admissibility developed in [CbTpIII], §3, to construct certain
arithmetic cuspidalizations of the [Primes-]tempered fundamental groups of hy-
perbolic curves over Qp equipped with “proj-metric structures” [cf. Definition
3.19 below].

Definition 3.19. Let Σ ⊆ Primes be a subset of cardinality ≥ 2 that con-
tains p; K a mixed characteristic complete discrete valuation field of residue
characteristic p; X a hyperbolic curve over K. Write Πtp

X for the Σ-tempered

fundamental group of X. For each open subgroup Π∗ ⊆ Πtp
X of finite index,

write
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• XΠ∗ for the compactified stable model over OK of the hyperbolic curve

over K corresponding to the open subgroup Π∗ ⊆ Πtp
X ;

• ΓΠ∗ for the dual graph associated to (XΠ∗)s;

• µ
Π∗ for the metric structure on ΓΠ∗ associated to XΠ∗ , considered up to

multiplication by a constant ∈ Q× [cf. [CbTpIII], Definition 3.5, (iii)].

Then we shall refer to µ
Π∗ as the proj-metric structure on ΓΠ∗ . We shall refer to

the collection of data of proj-metric structures {µ
Π∗} associated to the charac-

teristic open subgroups {Π∗ ⊆ Πtp
X} of finite index as the proj-metric structure

on Πtp
X .

Theorem 3.20 (Construction of certain arithmetic cuspidalizations of
geometric tempered fundamental groups). Let K be a mixed characteris-
tic complete discrete valuation field of residue characteristic p; X a hyperbolic
curve over K; X̃ a universal pro-Primes covering of X. Suppose that X sat-
isfies Primes-RNS. Write Ω for the p-adic completion of K. For n ≥ 2 an

integer, write Xn for the n-th configuration space associated to X; Π1
def
= ΠX ;

Πn
def
= ΠXn ; Π2/1 for the kernel of the natural surjection Π2 ↠ Π1 induced

by the first projection X2 → X, where we regard Π2 as a quotient of Πn via
the projection Xn → X2 to the first two factors; Πtp

1 for the Primes-tempered
fundamental group of X;

(Out(Πn) ⊇) Out(Πn)
tp def

= OutgF(Πn) ×Out(Π1) Out(Πtp
1 ),

(Out(Πn) ⊇) OutgFC(Πn)
def
= OutgF(Πn) ∩ OutFC(Πn) (⊆ Out(Π1)),

(Out(Πn) ⊇) OutgFC(Πn)
M def

= OutgF(Πn) ∩ OutFC(Πn)
M (⊆ Out(Πtp

1 ) ⊆ Out(Π1))

[cf. [HMM], Definition 2.1, (iv); [CbTpI], Theorem A, (i); [CbTpIII], Propo-
sition 3.3, (iv); [CbTpIII], Definition 3.7, (i), (ii), (iii); [NodNon], Theorem
B];

VE(Πtp
1 ), Πtp

1 (Ω)

for the respective sets “VE(X̃)” and “X̃(Ω)” equipped with their natural actions
by Aut(Πtp

1 ) and Π1 constructed in [the proof of ] Corollary 2.5, (i), and Corol-
lary 3.10 from the underlying topological group of Πtp

1 . Let x̃ ∈ VE(Πtp
1 ). Then

the following hold:

(i) One may construct an “arithmetic cuspidalization” of Πtp
1 associated to x̃

from the data consisting of

• the topological group Πn equipped with the quotients Πn ↠ Π2 ↠ Π1

and a topology [i.e., the tempered topology] on the subquotient Πn ↠
Π2 ↠ Π1 ⊇ Πtp

1
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in a fashion that is functorial with respect to isomorphisms of this data
[in the evident sense] as follows: Observe that the subgroup Out(Πn)

tp ⊆
Out(Πn) may be constructed from the given data [cf. [HMM], Theorem
A, (ii)]. Write

nD
tp
x̃ ⊆ Πtp

1

out
⋊ Out(Πn)

tp = Aut(Πtp
1 )×Out(Πtp

1 ) Out(Πn)
tp

[cf. [CbTpIII], Proposition 3.3, (i), (ii); [MT], Proposition 2.2, (ii)] for
the stabilizer subgroup of x̃. Note that there exists a natural exact sequence
[that may be constructed from the given data]

1 −→ Π2/1 −→ (Π2 ×Π1 Π
tp
1 )

out
⋊ Out(Πn)

tp −→ Πtp
1

out
⋊ Out(Πn)

tp −→ 1.

Thus, by pulling-back the above exact sequence via the inclusion nD
tp
x̃ ⊆

Πtp
1

out
⋊ Out(Πn)

tp, we obtain an exact sequence

1 −→ Π2/1 −→ Π2/1

out
⋊ nD

tp
x̃ −→ nD

tp
x̃ −→ 1.

We shall refer to Π2/1

out
⋊ nD

tp
x̃ as the [n-th] arithmetic cuspidalization

of Πtp
1 associated to x.

(ii) Write
Πtp

1 (Ω)n-alg ⊆ Πtp
1 (Ω)

for the subset of elements ξ ∈ Πtp
1 (Ω) whose Π1-orbit Π1 · ξ is stabilized

by some open subgroup of OutgFC(Πn)
M (⊆ Out(Πtp

1 )) [cf. Remark 3.20.1
below]. Suppose that x̃ arises from an element ∈ Πtp

1 (Ω)n-alg ⊆ Πtp
1 (Ω),

which, by a slight abuse of notation, we shall also denote by x̃. Write

Xx
def
= XΩ \ {x}, where x ∈ X(Ω) denotes the element determined by x̃.

Then the [Primes-]tempered fundamental group

Πtp
Xx

(⊆ Π2/1)

of Xx [where we identify Π2/1 with ΠXx
], together with the proj-metric

structure on Πtp
Xx

, may be reconstructed, in a purely combinatorial/group-
theoretic way, from the following data

• the topological group Πn equipped with the quotients Πn ↠ Π2 ↠ Π1

and a topology [i.e., the tempered topology] and proj-metric structure
on the subquotient Πn ↠ Π2 ↠ Π1 ⊇ Πtp

1 ;

• the subgroup OutgFC(Πn) ⊆ Out(Πn) [cf. Remark 3.20.2 below]

in a fashion that is functorial with respect to isomorphisms of this data
[in the evident sense].
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Proof. Assertion (i) follows immediately from the various definitions involved.
Next, we verify assertion (ii). Write

nD
M
x̃

def
=

{
Πtp

1

out
⋊ OutgFC(Πn)

M

}
∩ nD

tp
x̃ (⊆ Πtp

1

out
⋊ Out(Πn)

tp).

In particular, it follows immediately from assertion (i), together with the various
definitions involved, that one may construct, from the given data, nD

M
x̃ , together

with the natural outer action of nD
M
x̃ on Π2/1. Let Π†

2/1 ⊆ Π2/1 be an open

subgroup that is normal in Π2; l a prime number ̸= p. Write K ⊆ Ktm (⊆ K)

for the maximal tame extension of K; Gtm
K

def
= Gal(Ktm/Kur); Π2/1 ↠ Π∗

2/1 for

the maximal almost pro-l quotient associated to [i.e., “with respect to”] Π†
2/1 ⊆

Π2/1 [cf. [CbTpIII], Definition 1.1]. Let us assume further that the quotient
Π2 ↠ Π2/Ker(Π2/1 ↠ Π∗

2/1) is F-characteristic [cf. [CbTpIII], Definition 2.1,

(iii)]. Note that this implies that, relative to the identification of Π2/1 with ΠXx

[cf. the statement of assertion (ii)], the natural Π2/1-outer action of GK on Π2

[which is well-defined after possibly replacing K by a suitable finite extension
field of K] induces a natural outer action of GK on Π∗

2/1. Thus, in order to

complete the proof of assertion (ii), it suffices, in light of the argument given
in the proof of [CbTpIII], Theorem 3.9 [cf., especially, the equivalence stated in
the final display of the proof of [CbTpIII], Theorem 3.9], to reconstruct, after
possibly replacing K by a suitable finite extension field of K, the image of Gtm

K

in Out(Π∗
2/1) via the natural outer representation.

Next, we verify the following assertion:

Claim 3.20.A: Let (X̃ →) Y → X be a [connected] finite étale Galois
covering over K. Then there exist a compactified semistable model
Y of Y over OK and a [connected] finite étale Galois covering (X̃ →
) Z → X over K that dominates Y → X and satisfies the following
conditions:

• The compactified stable model Z of Z over OK dominates Y.
• The component of the VE-chain x̃ corresponding to Z is an

irreducible component of Zs that maps to a smooth closed point
∈ Ys that is not a cusp.

Indeed, since X satisfies Primes-RNS, Claim 3.20.A follows immediately from
the fact that the VE-chain x̃ arises from an element ∈ Πtp

1 (Ω) that is of type
1, hence weakly verticial [cf. Proposition 2.4, (v); Remark 3.1.1; Proposition
3.3, (ii); Proposition 3.4, (iii); the theory of pointed stable curves, as exposed in
[Knud]].

Next, we observe that it follows from [CbTpIII], Proposition 2.3, (ii) [cf.
conditions (a), (b), (c) below]; [CbTpIII], Corollary 2.10 [cf. condition (c) be-
low], together with Claim 3.20.A [cf. condition (b) below], that, after possibly

replacing Π†
2/1 ⊆ Π2/1 by a smaller open subgroup that satisfies the same con-

ditions as Π†
2/1, there exist F-characteristic SA-maximal almost pro-l quotients

Π2 ↠ Π∗
2, Π2 ↠ Π∗∗

2 satisfying the following conditions:
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(a) The F-characteristic SA-maximal almost pro-l quotient Π2 ↠ Π∗∗
2 dom-

inates the F-characteristic SA-maximal almost pro-l quotient Π2 ↠ Π∗
2.

In particular, we obtain a commutative diagram of profinite groups

1 −−−−→ Π∗∗
2/1 −−−−→ Π∗∗

2 −−−−→ Π∗∗
1 −−−−→ 1y y y

1 −−−−→ Π∗
2/1 −−−−→ Π∗

2 −−−−→ Π∗
1 −−−−→ 1,

where the quotients Π∗
1, Π

∗∗
1 of Π1 induced by Π∗

2, Π
∗∗
2 are the center-free

[cf. [CbTpIII], Proposition 1.7, (i)] maximal almost pro-l quotients of Π1

associated to normal open subgroups of Π1; the quotients Π∗
2/1, Π

∗∗
2/1 of

Π2/1 induced by Π∗
2 and Π∗∗

2 are the center-free [cf. [CbTpIII], Proposition
1.7, (i)] maximal almost pro-l quotients of Π2/1 associated to normal open
subgroups of Π2/1; the vertical arrows denote surjective homomorphisms.

(b) Fix a normal open subgroup ΠY ⊆ Π1 whose associated maximal almost
pro-l quotient coincides with Π1 ↠ Π∗

1. Then there exists a normal open
subgroup ΠZ ⊆ Π1 such that:

• It holds that ΠZ ⊆ ΠY . [In particular, the maximal almost pro-l
quotient associated to the normal open subgroup ΠZ ⊆ Π1 dominates
the maximal almost pro-l quotient Π1 ↠ Π∗

1.]

• The maximal almost pro-l quotient Π1 ↠ Π∗∗
1 dominates the maximal

almost pro-l quotient associated to the normal open subgroup ΠZ ⊆
Π1.

• Write (X̃ →) Y → X, (X̃ →) Z → X for the respective [connected]
finite étale Galois coverings over K associated to the normal open
subgroups ΠY ⊆ Π1, ΠZ ⊆ Π1. Then there exists a compactified
semistable model Y of Y over OK such that the compactified stable
model Z of Z over OK dominates Y, and, moreover, the component
of the VE-chain x̃ corresponding to Z is an irreducible component of
Zs that maps to a smooth closed point ∈ Ys that is not a cusp.

(c) Every element ∈ OutFC(Π∗∗
2 ↠ Π∗

2) ∩ Ker(OutFC(Π∗∗
2 ) → Out(Π∗∗

1 )) [cf.
[CbTpIII], Definition 2.1, (viii)] induces the trivial outer automorphism of
Π∗

2.

Write
D∗∗

x̃

for the image of nD
M
x̃ (⊆ Π1

out
⋊ OutgFC(Πn) ⊆ Π1

out
⋊ OutgFC(Π2)) [where the

second inclusion follows from [NodNon], Theorem B] via the natural homomor-

phism Π1

out
⋊ OutgFC(Π2)→ Π∗∗

1

out
⋊ OutFC(Π∗∗

2 );

ρ∗∗ : D∗∗
x̃ ⊆ Π∗∗

1

out
⋊ OutFC(Π∗∗

2 ↠ Π∗
2) −→ Out(Π∗∗

1 )
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for the natural composite homomorphism.
Next, we verify the following assertion:

Claim 3.20.B: There exists an open subgroup

D∗∗ ⊆ D∗∗
x̃

such that every element ∈ D∗∗ ∩ Ker(ρ∗∗) induces the trivial outer
action on Π∗

2/1.

Indeed, observe that since Π∗∗
1 is center-free [cf. condition (a)], the natural

homomorphism

D∗∗
x̃ −→ Π∗∗

1

out
⋊ Out(Π∗∗

1 ) = Aut(Π∗∗
1 )

induces a natural homomorphism

ϕ : Ker(ρ∗∗) −→ Π∗∗
1 .

Thus, it follows immediately from the final portion of condition (b) [cf. also
the proof of Claim 3.20.A; our assumption that X satisfies Primes-RNS; the
portion of Proposition 3.5, (i), concerning the weakly verticial case], together
with the various definitions involved [cf., especially, the definition of D∗∗

x̃ ], that
the image of the natural composite homomorphism

Ker(ρ∗∗)
ϕ−→ Π∗∗

1 ↠ Π∗
1

is finite. In particular, there exists an open subgroup D∗∗ ⊆ D∗∗
x̃ such that every

element ∈ D∗∗∩Ker(ρ∗∗) induces the trivial automorphism of Π∗
1. On the other

hand, this implies, in light of condition (c), that every element ∈ D∗∗∩Ker(ρ∗∗)
induces the trivial outer automorphism of Π∗

2. Thus, since Π∗
1 is center-free [cf.

condition (a)], we conclude that every element ∈ D∗∗ ∩ Ker(ρ∗∗) induces the
trivial outer automorphism of Π∗

2/1. This completes the proof of Claim 3.20.B.
Next, let us observe that, by applying the argument given in the proof of

[CbTpIII], Theorem 3.9 [cf., especially, the equivalence stated in the final display
of the proof of [CbTpIII], Theorem 3.9], together with condition (a), we conclude
that, after possibly replacing K by a suitable finite extension field of K, one
may reconstruct, from the proj-metric structure on Πtp

1 , the image I of Gtm
K

in Out(Π∗∗
1 ) via the natural outer representation. On the other hand, observe

that ρ∗∗(D∗∗) contains an open subgroup of I [cf. Remark 3.20.1 below]. Thus,
since D∗∗∩Ker(ρ∗∗) induces the trivial outer action on Π∗

2/1 [cf. Claim 3.20.B],

by considering the outer action of D∗∗ ∩ (ρ∗∗)−1(I) on Π∗
2/1, we conclude that,

after possibly replacing K by a suitable finite extension field of K, one may
reconstruct the image of Gtm

K in Out(Π∗
2/1), as desired. This completes the

proof of assertion (ii), hence of Theorem 3.20.
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Remark 3.20.1. Suppose that we are in the situation of Theorem 3.20, (ii). Then
it follows immediately from the definitions [cf. also the natural homomorphism
GK → OutgFC(Πn)

M [which is well-defined after possibly replacing K by a suit-
able finite extension field of K]; the proof of Theorem 3.11, (ii)] that the subset
Πtp

1 (Ω)n-alg ⊆ Πtp
1 (Ω) is contained in the subset Πtp

1 (K) ⊆ Πtp
1 (Ω) correspond-

ing to the K-rational points of the set “X̃(Ω)” constructed in Corollary 3.10.
Moreover, it follows immediately from Proposition 3.18 [cf. also Theorem 3.16;
[HMM], Corollaries B, C] that the inclusion

Πtp
1 (Ω)n-alg ⊆ Πtp

1 (K)

is in fact an equality in the case where X = P1
Qp
\ {0, 1,∞}. It is not clear to

the authors, however, at the time of writing of the present paper whether or not
the inclusion of the above display is an equality in general.

Remark 3.20.2. Suppose that we are in the situation of Theorem 3.20, (ii). Then
we observe that the data “OutgFC(Πn) ⊆ Out(Πn)” may be omitted from the
list of data in the statement of Theorem 3.20, (ii), in either of the following
situations [cf. [CbTpII], Theorem A, (ii); [HMM], Theorem A, (ii); [HMT],
Corollary 2.2]:

• X is of genus 0.

• X is affine, and n ≥ 3.

• X is proper, and n ≥ 4.

It is not clear to the authors, however, at the time of writing of the present
paper whether or not this data “OutgFC(Πn) ⊆ Out(Πn)” may be omitted in
general.
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[Hgsh] K. Higashiyama, The semi-absolute anabelian geometry of geometrically
pro-p arithmetic fundamental groups of associated low-dimensional config-
uration spaces, Publ. Res. Inst. Math. Sci. 58 (2022), pp. 579–634.

[BSC] Y. Hoshi, Conditional results on the birational section conjecture over
small number fields, Automorphic forms and Galois representations, Vol. 2,
London Math. Soc. Lecture Note Ser. 415, Cambridge Univ. Press (2014),
pp. 187–230.

[NodNon] Y. Hoshi and S. Mochizuki, On the combinatorial anabelian geometry
of nodally nondegenerate outer representations, Hiroshima Math. J. 41
(2011), pp. 275–342.

[CbTpI] Y. Hoshi and S. Mochizuki, Topics surrounding the combinatorial an-
abelian geometry of hyperbolic curves I: Inertia groups and profinite Dehn
twists, Galois-Teichmüller Theory and Arithmetic Geometry, Adv. Stud.
Pure Math. 63, Math. Soc. Japan (2012), pp. 659–811.

[CbTpII] Y. Hoshi and S. Mochizuki, Topics surrounding the combinatorial an-
abelian geometry of hyperbolic curves II: Tripods and combinatorial cusp-
idalization, Lecture Notes in Mathematics 2299, Springer-Verlag (2022).

[CbTpIII] Y. Hoshi and S. Mochizuki, Topics surrounding the combinatorial
anabelian geometry of hyperbolic curves III: Tripods and tempered funda-
mental groups, RIMS Preprint 1763 (November 2012).

[CbTpIV] Y. Hoshi and S. Mochizuki, Topics surrounding the combinatorial
anabelian geometry of hyperbolic curves IV: Discreteness and sections, to
appear in Nagoya Math. J.

[Knud] F. F. Knudsen, The projectivity of the moduli space of stable curves,
II: The stacks Mg,n, Math. Scand. 52 (1983), pp. 161–199.

[HMM] Y. Hoshi, A. Minamide, and S. Mochizuki, Group-theoreticity of numer-
ical invariants and distinguished subgroups of configuration space groups,
Kodai Math. J. 45 (2022), pp. 295–348.

104



[HMT] Y. Hoshi, S. Mochizuki, and S. Tsujimura, Combinatorial construction
of the absolute Galois group of the field of rational numbers, RIMS Preprint
1935 (December 2020).

[Lpg1] E. Lepage, Resolution of non-singularities for Mumford curves, Publ.
Res. Inst. Math. Sci. 49 (2013), pp. 861–891.

[Lpg2] E. Lepage, Resolution of non-singularities and the absolute anabelian
conjecture, arXiv:2306.07058 [math.AG].

[Milne] J. S. Milne, Jacobian varieties in Arithmetic Geometry, ed. by G. Cornell
and J.H. Silverman, Springer-Verlag (1986), pp. 167–212.

[MiSaTs] A. Minamide, K. Sawada, and S. Tsujimura, On generalizations of
anabelian group-theoretic properties, RIMS Preprint 1965 (August 2022).

[MiTs1] A. Minamide and S. Tsujimura, Anabelian group-theoretic properties
of the absolute Galois groups of discrete valuation fields, J. Number Theory
239 (2022), pp. 298–334.

[MiTs2] A. Minamide and S. Tsujimura, Anabelian geometry for Henselian dis-
crete valuation fields with quasi-finite residues, RIMS Preprint 1973 (June
2023).

[Hur] S. Mochizuki, The geometry of the compactification of the Hurwitz
scheme, Publ. Res. Inst. Math. Sci. 31 (1995), pp. 355–441.

[PrfGC] S. Mochizuki, The profinite Grothendieck conjecture for closed hyper-
bolic curves over number fields, J. Math. Sci. Univ. Tokyo 3 (1996), pp.
571–627.

[LocAn] S. Mochizuki, The local pro-p anabelian geometry of curves, Invent.
Math. 138 (1999), pp. 319–423.

[ExtFam] S. Mochizuki, Extending families of curves over log regular schemes,
J. reine angew. Math. 511 (1999), pp. 43–71.

[CanLift] S. Mochizuki, The absolute anabelian geometry of canonical curves,
Kazuya Kato’s fiftieth birthday, Doc. Math. 2003, Extra Vol., pp. 609–640.

[AnabTop] S. Mochizuki, Topics surrounding the anabelian geometry of hyper-
bolic curves, Galois groups and fundamental groups, Math. Sci. Res. Inst.
Publ. 41, Cambridge Univ. Press. (2003), pp. 119–165.

[NCBel] S. Mochizuki, Noncritical Belyi maps, Math. J. Okayama Univ. 46
(2004), pp. 105–113.

[AbsAnab] S. Mochizuki, The absolute anabelian geometry of hyperbolic curves,
Galois Theory and Modular Forms, Kluwer Academic Publishers (2004),
pp. 77–122.

105



[SemiAn] S. Mochizuki, Semi-graphs of anabelioids, Publ. Res. Inst. Math. Sci.
42 (2006), pp. 221–322.

[CmbGC] S. Mochizuki, A combinatorial version of the Grothendieck conjec-
ture, Tohoku Math. J. 59 (2007), pp. 455–479.

[CmbCsp] S. Mochizuki, On the combinatorial cuspidalization of hyperbolic
curves, Osaka J. Math. 47 (2010), pp. 651–715.

[AbsTopI] S. Mochizuki, Topics in absolute anabelian geometry I: Generalities,
J. Math. Sci. Univ. Tokyo 19 (2012), pp. 139–242.

[AbsTopII] S. Mochizuki, Topics in absolute anabelian geometry II: Decompo-
sition groups and endomorphisms, J. Math. Sci. Univ. Tokyo 20 (2013),
pp. 171–269.

[AbsTopIII] S. Mochizuki, Topics in absolute anabelian geometry III: Global
reconstruction algorithms, J. Math. Sci. Univ. Tokyo 22 (2015), pp. 939–
1156.

[MT] S. Mochizuki and A. Tamagawa, The algebraic and anabelian geometry
of configuration spaces, Hokkaido Math. J. 37 (2008), pp. 75–131.

[Neu] J. Neukirch, Algebraic number theory, Grundlehren der Mathematischen
Wissenschaften 322, Springer-Verlag (1999).

[NSW] J. Neukirch, A. Schmidt, K. Wingberg, Cohomology of number fields,
Grundlehren der Mathematischen Wissenschaften 323, Springer-Verlag
(2000).

[Ray1] M. Raynaud, Sections des fibrés vectoriels sur une courbe, Bull. Soc.
Math. France, 110 (1982), pp. 103–125.
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